Your browser doesn't support javascript.
loading
Role of AGAP2 in the profibrogenic effects induced by TGFß in LX-2 hepatic stellate cells.
Navarro-Corcuera, Amaia; López-Zabalza, María J; Martínez-Irujo, Juan J; Álvarez-Sola, Gloria; Ávila, Matías A; Iraburu, María J; Ansorena, Eduardo; Montiel-Duarte, Cristina.
Affiliation
  • Navarro-Corcuera A; Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain. Electronic address: anavarro.1@alumni.unav.es.
  • López-Zabalza MJ; Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain. Electronic address: mjlopez@unav.es.
  • Martínez-Irujo JJ; Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain. Electronic address: jjmirujo@unav.es.
  • Álvarez-Sola G; Hepatology Program. CIMA, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain. Electronic address: galvarez.1@alumni.unav.es.
  • Ávila MA; Hepatology Program. CIMA, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain. Electronic address: maavila@unav.es.
  • Iraburu MJ; Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain. Electronic address: miraburu@unav.es.
  • Ansorena E; Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain. Electronic address: eansorena@unav.es.
  • Montiel-Duarte C; College of Science and Technology, Nottingham Trent University, Nottingham, UK. Electronic address: cristina.montielduarte@ntu.ac.uk.
Biochim Biophys Acta Mol Cell Res ; 1866(4): 673-685, 2019 04.
Article in En | MEDLINE | ID: mdl-30660615
Liver damage induces hepatic stellate cells (HSC) activation, characterised by a fibrogenic, proliferative and migratory phenotype. Activated HSC are mainly regulated by transforming growth factor ß 1 (TGFß1), which increases the production of extracellular matrix proteins (e.g. collagen-I) promoting the progression of hepatic fibrosis. AGAP2 (ArfGAP with GTPase domain, ankyrin repeat and PH domain 2) is a GTPase/GTP-activating protein involved in the actin remodelling system and receptor recycling. In the present work the role of AGAP2 in human HSC in response to TGFß1 was investigated. LX-2 HSC were transfected with AGAP2 siRNA and treated with TGFß1. AGAP2 knockdown prevented to some extent the proliferative and migratory TGFß1-induced capacities of LX-2 cells. An array focused on human fibrosis revealed that AGAP2 knockdown partially prevented TGFß1-mediated gene expression of the fibrogenic genes ACTA2, COL1A2, EDN1, INHBE, LOX, PDGFB, TGFΒ12, while favored the expression of CXCR4, IL1A, MMP1, MMP3 and MMP9 genes. Furthermore, TGFß1 induced AGAP2 promoter activation and its protein expression in LX-2. Moreover, AGAP2 protein levels were significantly increased in liver samples from rats with thioacetamide-induced fibrosis. In addition, AGAP2 silencing affected TGFß1-receptor 2 (TGFR2) trafficking in U2OS cells, blocking its effective recycling to the membrane. AGAP2 silencing in LX-2 cells prevented the TGFß1-induced increase of collagen-I protein levels, while its overexpression enhanced collagen-I protein expression in the presence or absence of the cytokine. AGAP2 overexpression also increased focal adhesion kinase (FAK) phosphorylated levels in LX-2 cells. FAK and MEK1 inhibitors prevented the increase of collagen-I expression caused by TGFß1 in LX-2 overexpressing AGAP2. In summary, the present work shows for the first time, that AGAP2 is a potential new target involved in TGFß1 signalling, contributing to the progression of hepatic fibrosis.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: GTP-Binding Proteins / GTPase-Activating Proteins / Transforming Growth Factor beta1 / Hepatic Stellate Cells Limits: Animals / Humans / Male Language: En Journal: Biochim Biophys Acta Mol Cell Res Year: 2019 Document type: Article Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: GTP-Binding Proteins / GTPase-Activating Proteins / Transforming Growth Factor beta1 / Hepatic Stellate Cells Limits: Animals / Humans / Male Language: En Journal: Biochim Biophys Acta Mol Cell Res Year: 2019 Document type: Article Country of publication: Netherlands