Novel Molecular Doping Mechanism for n-Doping of SnO2 via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells.
Adv Mater
; 31(15): e1805944, 2019 Apr.
Article
in En
| MEDLINE
| ID: mdl-30697836
Molecular doping of inorganic semiconductors is a rising topic in the field of organic/inorganic hybrid electronics. However, it is difficult to find dopant molecules which simultaneously exhibit strong reducibility and stability in ambient atmosphere, which are needed for n-type doping of oxide semiconductors. Herein, successful n-type doping of SnO2 is demonstrated by a simple, air-robust, and cost-effective triphenylphosphine oxide molecule. Strikingly, it is discovered that electrons are transferred from the R3P+ O- σ-bond to the peripheral tin atoms other than the directly interacted ones at the surface. That means those electrons are delocalized. The course is verified by multi-photophysical characterizations. This doping effect accounts for the enhancement of conductivity and the decline of work function of SnO2 , which enlarges the built-in field from 0.01 to 0.07 eV and decreases the energy barrier from 0.55 to 0.39 eV at the SnO2 /perovskite interface enabling an increase in the conversion efficiency of perovskite solar cells from 19.01% to 20.69%.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Adv Mater
Journal subject:
BIOFISICA
/
QUIMICA
Year:
2019
Document type:
Article
Affiliation country:
China
Country of publication:
Germany