Your browser doesn't support javascript.
loading
Shenduning Granule Attenuates Renal Injury from Oxidative Stress through the Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway.
Fu, Xiao-Jun; Hu, Shuang-Yan.
Affiliation
  • Fu XJ; Department of Nephropath, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, China, fuxj_med@163.com.
  • Hu SY; Department of Nephropath, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, China.
Pharmacology ; 103(5-6): 236-245, 2019.
Article in En | MEDLINE | ID: mdl-30699431
ABSTRACT

BACKGROUND:

Systemic oxidative stress has been reported to play a central role in the pathogenesis of kidney function decline. The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is one of the important endogenous antioxidant stress pathways in cells. This study aims to investigate whether shenduning granule can ameliorate oxidative stress in kidney tissues by activating the Nrf2/ARE pathway, and explores the detailed underlying mechanism.

METHODS:

A total of 120 male Sprague-Dawley rats were randomly assigned to the sham-operated and operation groups. Rats in the operation group underwent 5/6 nephrectomy. Two weeks later, rats in the operation group were further randomly divided into 5 groups model group, low-dose, medium-dose and high-dose shenduning granule groups, and losartan group. Rats in each group were given the same volume of corresponding liquid orally. Serum creatinine (SCr), blood urea nitrogen (BUN), 24-h urinary protein, malondialdehyde (MDA) and superoxide dismutase (SOD), Nrf2, heme oxygenase-1 (HO-1), and γ-glutamyl-cysteine synthetase (γ-GCS) were determined.

RESULTS:

Shenduning granule could markedly elevate HO-1, NRF2, γ-GCS and SOD (p < 0.05), and significantly decreased MDA, 24-h urinary protein, SCr and BUN in rats (p < 0.05).

CONCLUSION:

Shenduning granule can improve renal antioxidative stress activity in rats, exhibiting a renoprotective effect. The potential mechanism is likely exerted by the activation of the Nrf2/ARE pathway.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plant Extracts / Oxidative Stress / NF-E2-Related Factor 2 / Kidney Diseases Type of study: Etiology_studies / Prognostic_studies Limits: Animals Language: En Journal: Pharmacology Year: 2019 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plant Extracts / Oxidative Stress / NF-E2-Related Factor 2 / Kidney Diseases Type of study: Etiology_studies / Prognostic_studies Limits: Animals Language: En Journal: Pharmacology Year: 2019 Document type: Article