Your browser doesn't support javascript.
loading
Secondary organic aerosol reduced by mixture of atmospheric vapours.
McFiggans, Gordon; Mentel, Thomas F; Wildt, Jürgen; Pullinen, Iida; Kang, Sungah; Kleist, Einhard; Schmitt, Sebastian; Springer, Monika; Tillmann, Ralf; Wu, Cheng; Zhao, Defeng; Hallquist, Mattias; Faxon, Cameron; Le Breton, Michael; Hallquist, Åsa M; Simpson, David; Bergström, Robert; Jenkin, Michael E; Ehn, Mikael; Thornton, Joel A; Alfarra, M Rami; Bannan, Thomas J; Percival, Carl J; Priestley, Michael; Topping, David; Kiendler-Scharr, Astrid.
Affiliation
  • McFiggans G; School of Earth and Environmental Sciences, University of Manchester, Manchester, UK.
  • Mentel TF; Institut für Energie- und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich, Germany. t.mentel@fz-juelich.de.
  • Wildt J; Institut für Energie- und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich, Germany.
  • Pullinen I; Institut für Bio- und Geowissenschaften, IBG-2, Forschungszentrum Jülich, Jülich, Germany.
  • Kang S; Institut für Energie- und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich, Germany.
  • Kleist E; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
  • Schmitt S; Institut für Energie- und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich, Germany.
  • Springer M; Institut für Bio- und Geowissenschaften, IBG-2, Forschungszentrum Jülich, Jülich, Germany.
  • Tillmann R; Institut für Energie- und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich, Germany.
  • Wu C; TSI, Aachen, Germany.
  • Zhao D; Institut für Energie- und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich, Germany.
  • Hallquist M; Institut für Energie- und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich, Germany.
  • Faxon C; Institut für Energie- und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich, Germany.
  • Le Breton M; Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
  • Hallquist ÅM; Institut für Energie- und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich, Germany.
  • Simpson D; Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China.
  • Bergström R; Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
  • Jenkin ME; Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
  • Ehn M; School of Earth and Environmental Sciences, University of Manchester, Manchester, UK.
  • Thornton JA; Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
  • Alfarra MR; IVL Swedish Environmental Research Institute, Gothenburg, Sweden.
  • Bannan TJ; Department of Earth, Space and Environment, Chalmers University of Technology, Gothenburg, Sweden.
  • Percival CJ; EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway.
  • Priestley M; Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
  • Topping D; Department of Earth, Space and Environment, Chalmers University of Technology, Gothenburg, Sweden.
  • Kiendler-Scharr A; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.
Nature ; 565(7741): 587-593, 2019 01.
Article in En | MEDLINE | ID: mdl-30700872
ABSTRACT
Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene 'scavenges' hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nature Year: 2019 Document type: Article Affiliation country: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nature Year: 2019 Document type: Article Affiliation country: United kingdom