Your browser doesn't support javascript.
loading
Use of hidden Markov capture-recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations.
Santostasi, Nina Luisa; Ciucci, Paolo; Caniglia, Romolo; Fabbri, Elena; Molinari, Luigi; Reggioni, Willy; Gimenez, Olivier.
Affiliation
  • Santostasi NL; Department of Biology and Biotechnologies "Charles Darwin" University of Rome La Sapienza Rome Italy.
  • Ciucci P; CEFE, CNRS University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD Montpellier France.
  • Caniglia R; Department of Biology and Biotechnologies "Charles Darwin" University of Rome La Sapienza Rome Italy.
  • Fabbri E; Italian Institute for Environmental Protection and Research (ISPRA) Unit for Conservation Genetics (BIO-CGE) Ozzano dell'Emilia Bologna Italy.
  • Molinari L; Italian Institute for Environmental Protection and Research (ISPRA) Unit for Conservation Genetics (BIO-CGE) Ozzano dell'Emilia Bologna Italy.
  • Reggioni W; Wolf Apennine Center Appennino Tosco-Emiliano National Park Ligonchio Italy.
  • Gimenez O; Wolf Apennine Center Appennino Tosco-Emiliano National Park Ligonchio Italy.
Ecol Evol ; 9(2): 744-755, 2019 Jan.
Article in En | MEDLINE | ID: mdl-30766665
Estimating the relative abundance (prevalence) of different population segments is a key step in addressing fundamental research questions in ecology, evolution, and conservation. The raw percentage of individuals in the sample (naive prevalence) is generally used for this purpose, but it is likely to be subject to two main sources of bias. First, the detectability of individuals is ignored; second, classification errors may occur due to some inherent limits of the diagnostic methods. We developed a hidden Markov (also known as multievent) capture-recapture model to estimate prevalence in free-ranging populations accounting for imperfect detectability and uncertainty in individual's classification. We carried out a simulation study to compare naive and model-based estimates of prevalence and assess the performance of our model under different sampling scenarios. We then illustrate our method with a real-world case study of estimating the prevalence of wolf (Canis lupus) and dog (Canis lupus familiaris) hybrids in a wolf population in northern Italy. We showed that the prevalence of hybrids could be estimated while accounting for both detectability and classification uncertainty. Model-based prevalence consistently had better performance than naive prevalence in the presence of differential detectability and assignment probability and was unbiased for sampling scenarios with high detectability. We also showed that ignoring detectability and uncertainty in the wolf case study would lead to underestimating the prevalence of hybrids. Our results underline the importance of a model-based approach to obtain unbiased estimates of prevalence of different population segments. Our model can be adapted to any taxa, and it can be used to estimate absolute abundance and prevalence in a variety of cases involving imperfect detection and uncertainty in classification of individuals (e.g., sex ratio, proportion of breeders, and prevalence of infected individuals).
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Health_economic_evaluation / Prevalence_studies / Risk_factors_studies Language: En Journal: Ecol Evol Year: 2019 Document type: Article Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Health_economic_evaluation / Prevalence_studies / Risk_factors_studies Language: En Journal: Ecol Evol Year: 2019 Document type: Article Country of publication: United kingdom