Your browser doesn't support javascript.
loading
Eco-Friendly Method for Tailoring Biocompatible and Antimicrobial Surfaces of Poly-L-Lactic Acid.
Aflori, Magdalena; Butnaru, Maria; Tihauan, Bianca-Maria; Doroftei, Florica.
Affiliation
  • Aflori M; Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania. maflori@icmpp.ro.
  • Butnaru M; Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania. mariabutnaru@yahoo.com.
  • Tihauan BM; Sanimed International IMPEX SRL, Sos. Bucuresti-Magurele, nr. 70F, Sector 5, Bucharest 051434, Romania. bianca.tihauan@sanimed.ro.
  • Doroftei F; Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania. florica.doroftei@icmpp.ro.
Nanomaterials (Basel) ; 9(3)2019 Mar 13.
Article in En | MEDLINE | ID: mdl-30871241
ABSTRACT
In this study, a facile, eco-friendly route, in two steps, for obtaining of poly-L-lactic acid/chitosan-silver nanoparticles scaffolds under quiescent conditions was presented. The method consists of plasma treatment and then wet chemical treatment of poly-L-lactic acid (PLLA) films in a chitosan based-silver nanoparticles solution (Cs/AgNp). The changes of the physical and chemical surface proprieties were studied using scanning electron microscopy (SEM), small angle X-Ray scattering (SAXS), Fourier transform infrared spectroscopy (FTIR) and profilometry methods. A certain combination of plasma treatment and chitosan-based silver nanoparticles solution increased the biocompatibility of PLLA films in combination with cell line seeding as well as the antimicrobial activity for gram-positive and gram-negative bacteria. The sample that demonstrated from Energy Dispersive Spectroscopy (EDAX) to have the highest amount of nitrogen and the smallest amount of Ag, proved to have the highest value for cell viability, demonstrating better biocompatibility and very good antimicrobial proprieties.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomaterials (Basel) Year: 2019 Document type: Article Affiliation country: Romania

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomaterials (Basel) Year: 2019 Document type: Article Affiliation country: Romania
...