Your browser doesn't support javascript.
loading
The genome sequence of segmental allotetraploid peanut Arachis hypogaea.
Bertioli, David J; Jenkins, Jerry; Clevenger, Josh; Dudchenko, Olga; Gao, Dongying; Seijo, Guillermo; Leal-Bertioli, Soraya C M; Ren, Longhui; Farmer, Andrew D; Pandey, Manish K; Samoluk, Sergio S; Abernathy, Brian; Agarwal, Gaurav; Ballén-Taborda, Carolina; Cameron, Connor; Campbell, Jacqueline; Chavarro, Carolina; Chitikineni, Annapurna; Chu, Ye; Dash, Sudhansu; El Baidouri, Moaine; Guo, Baozhu; Huang, Wei; Kim, Kyung Do; Korani, Walid; Lanciano, Sophie; Lui, Christopher G; Mirouze, Marie; Moretzsohn, Márcio C; Pham, Melanie; Shin, Jin Hee; Shirasawa, Kenta; Sinharoy, Senjuti; Sreedasyam, Avinash; Weeks, Nathan T; Zhang, Xinyou; Zheng, Zheng; Sun, Ziqi; Froenicke, Lutz; Aiden, Erez L; Michelmore, Richard; Varshney, Rajeev K; Holbrook, C Corley; Cannon, Ethalinda K S; Scheffler, Brian E; Grimwood, Jane; Ozias-Akins, Peggy; Cannon, Steven B; Jackson, Scott A; Schmutz, Jeremy.
Affiliation
  • Bertioli DJ; Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA. bertioli@uga.edu.
  • Jenkins J; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA. bertioli@uga.edu.
  • Clevenger J; Department of Crop and Soil Science, University of Georgia, Athens, GA, USA. bertioli@uga.edu.
  • Dudchenko O; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA.
  • Gao D; Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
  • Seijo G; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.
  • Leal-Bertioli SCM; Department of Crop and Soil Science, University of Georgia, Athens, GA, USA.
  • Ren L; The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA.
  • Farmer AD; Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
  • Pandey MK; Instituto de Botánica del Nordeste (CONICET-UNNE), Corrientes, Argentina.
  • Samoluk SS; FACENA, Universidad Nacional del Nordeste, Corrientes, Argentina.
  • Abernathy B; Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
  • Agarwal G; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.
  • Ballén-Taborda C; Department of Plant Pathology, University of Georgia, Tifton, GA, USA.
  • Cameron C; Interdepartmental Genetics Graduate Program, Iowa State University, Ames, IA, USA.
  • Campbell J; National Center for Genome Resources, Santa Fe, NM, USA.
  • Chavarro C; Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
  • Chitikineni A; Instituto de Botánica del Nordeste (CONICET-UNNE), Corrientes, Argentina.
  • Chu Y; FACENA, Universidad Nacional del Nordeste, Corrientes, Argentina.
  • Dash S; Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
  • El Baidouri M; Department of Plant Pathology, University of Georgia, Tifton, GA, USA.
  • Guo B; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.
  • Huang W; National Center for Genome Resources, Santa Fe, NM, USA.
  • Kim KD; Department of Computer Science, Iowa State University, Ames, IA, USA.
  • Korani W; Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
  • Lanciano S; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.
  • Lui CG; Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
  • Mirouze M; Department of Horticulture, University of Georgia, Tifton, GA, USA.
  • Moretzsohn MC; National Center for Genome Resources, Santa Fe, NM, USA.
  • Pham M; UMR5096, Laboratoire Génome et Développement des Plantes, CNRS, Perpignan, France.
  • Shin JH; UMR5096, Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France.
  • Shirasawa K; Crop Protection and Management Research Unit, US Department of Agriculture, Agricultural Research Service, Tifton, GA, USA.
  • Sinharoy S; Department of Computer Science, Iowa State University, Ames, IA, USA.
  • Sreedasyam A; Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
  • Weeks NT; Corporate R&D, LG Chem, Seoul, Republic of Korea.
  • Zhang X; Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
  • Zheng Z; UMR5096, Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France.
  • Sun Z; UMR232, Diversité, Adaptation et Développement des Plantes, IRD, Montpellier, France.
  • Froenicke L; UMR232, Diversité, Adaptation et Développement des Plantes, Université de Montpellier, Montpellier, France.
  • Aiden EL; The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA.
  • Michelmore R; UMR5096, Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France.
  • Varshney RK; UMR232, Diversité, Adaptation et Développement des Plantes, IRD, Montpellier, France.
  • Holbrook CC; UMR232, Diversité, Adaptation et Développement des Plantes, Université de Montpellier, Montpellier, France.
  • Cannon EKS; Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.
  • Scheffler BE; The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA.
  • Grimwood J; Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
  • Ozias-Akins P; Corporate R&D, LG Chem, Seoul, Republic of Korea.
  • Cannon SB; Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan.
  • Jackson SA; National Institute of Plant Genome Research, New Delhi, India.
  • Schmutz J; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA.
Nat Genet ; 51(5): 877-884, 2019 05.
Article in En | MEDLINE | ID: mdl-31043755
Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arachis Country/Region as subject: America do sul / Argentina Language: En Journal: Nat Genet Journal subject: GENETICA MEDICA Year: 2019 Document type: Article Affiliation country: United States Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arachis Country/Region as subject: America do sul / Argentina Language: En Journal: Nat Genet Journal subject: GENETICA MEDICA Year: 2019 Document type: Article Affiliation country: United States Country of publication: United States