Your browser doesn't support javascript.
loading
SapM mutation to improve the BCG vaccine: Genomic, transcriptomic and preclinical safety characterization.
Festjens, Nele; Vandewalle, Kristof; Houthuys, Erica; Plets, Evelyn; Vanderschaeghe, Dieter; Borgers, Katlyn; Van Hecke, Annelies; Tiels, Petra; Callewaert, Nico.
Affiliation
  • Festjens N; Unit for Medical Biotechnology, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium. Electronic address: Nele.Festjens@vib-ugent.be.
  • Vandewalle K; Unit for Medical Biotechnology, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
  • Houthuys E; Unit for Medical Biotechnology, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
  • Plets E; Unit for Medical Biotechnology, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
  • Vanderschaeghe D; Unit for Medical Biotechnology, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
  • Borgers K; Unit for Medical Biotechnology, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
  • Van Hecke A; Unit for Medical Biotechnology, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
  • Tiels P; Unit for Medical Biotechnology, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
  • Callewaert N; Unit for Medical Biotechnology, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium. Electronic address: Nico.Callewaert@vib-ugent.be.
Vaccine ; 37(27): 3539-3551, 2019 06 12.
Article in En | MEDLINE | ID: mdl-31122861
ABSTRACT
The Mycobacterium bovis Bacille Calmette Guérin (BCG) vaccine shows variable efficacy in protection against adult tuberculosis (TB). Earlier, we have described a BCG mutant vaccine with a transposon insertion in the gene coding for the secreted acid phosphatase SapM, which led to enhanced long-term survival of vaccinated mice challenged with TB infection. To facilitate development of this mutation as part of a future improved live attenuated TB vaccine, we have now characterized the genome and transcriptome of this sapMTn mutant versus parental BCG Pasteur. Furthermore, we show that the sapMTn mutant had an equal low pathogenicity as WT BCG upon intravenous administration to immunocompromised SCID mice, passing this important safety test. Subsequently, we investigated the clearance of this improved vaccine strain following vaccination and found a more effective innate immune control over the sapMTn vaccine bacteria as compared to WT BCG. This leads to a fast contraction of IFNγ producing Th1 and Tc1 cells after sapMTn BCG vaccination. These findings corroborate that a live attenuated vaccine that affords improved long-term survival upon TB infection can be obtained by a mutation that further attenuates BCG. These findings suggest that an analysis of the effectiveness of innate immune control of the vaccine bacteria could be instructive also for other live attenuated TB vaccines that are currently under development, and encourage further studies of SapM mutation as a strategy in developing a more protective live attenuated TB vaccine.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Acid Phosphatase / BCG Vaccine / Virulence Factors / Drug Evaluation, Preclinical / Drug-Related Side Effects and Adverse Reactions / Mutation / Mycobacterium bovis Limits: Animals Language: En Journal: Vaccine Year: 2019 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Acid Phosphatase / BCG Vaccine / Virulence Factors / Drug Evaluation, Preclinical / Drug-Related Side Effects and Adverse Reactions / Mutation / Mycobacterium bovis Limits: Animals Language: En Journal: Vaccine Year: 2019 Document type: Article