Your browser doesn't support javascript.
loading
Estimated resistance of the malaria mosquito Anopheles messeae s.l. to the insecticide malathion.
Vaulin, Oleg V; Karagodin, Dmitry A; Baricheva, Elina M; Zakharov, Ilya K.
Affiliation
  • Vaulin OV; Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
  • Karagodin DA; Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
  • Baricheva EM; Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
  • Zakharov IK; Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
J Vector Ecol ; 44(1): 48-56, 2019 06.
Article in En | MEDLINE | ID: mdl-31124233
ABSTRACT
Resistance to agricultural pesticides is an important and insufficiently studied concern for pest and disease vector research. We determined the malathion resistance of species in the Anopheles maculipennis mosquito group in a habitat near Novosibirsk, Russia. Most of the 851 individuals we measured were members of the Anopheles messeae s.l. complex (An. messeae and An. daciae species). The LC50 value for malathion was 0.052 mg/L for the mixed specimens, and we failed to find any differences between species. The LC50 value was within the range of values for malathion resistance of Anopheles stephensi and Culex quinquefasciatus. As the main resistance mechanism to organophosphate and carbamate insecticides is a single mononucleotide substitution in the ace-1 gene, we searched for this mutation in An. messeae s.l. and An. beklemishevi by restriction analysis. This mutation was not found in 347 of the specimens. We sequenced the ace-1 gene fragment for 24 specimens from four species of the Anopheles maculipennis group, including An. messeae, An. daciae, An. atroparvus, and An. beklemishevi. These specimens harbored a nucleotide substitution in the triplet where a mutation can lead to insecticide resistance, but this substitution would make it difficult for the resistance to develop. Since the studied specimens belong to branches of the Palearctic portion of the Anopheles maculipennis group, we suspect that all other Palearctic species of this group would have difficulties harboring the ace-1 mutation that would lead to organophosphate and carbamate resistance.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Insecticide Resistance / Insecticides / Malathion / Anopheles Limits: Animals Country/Region as subject: Asia / Europa Language: En Journal: J Vector Ecol Journal subject: SAUDE AMBIENTAL Year: 2019 Document type: Article Affiliation country: RUSSIA

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Insecticide Resistance / Insecticides / Malathion / Anopheles Limits: Animals Country/Region as subject: Asia / Europa Language: En Journal: J Vector Ecol Journal subject: SAUDE AMBIENTAL Year: 2019 Document type: Article Affiliation country: RUSSIA