Your browser doesn't support javascript.
loading
SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation.
Gomez, Maria L; Shah, Nagma; Kenny, Timothy C; Jenkins, Edmund C; Germain, Doris.
Affiliation
  • Gomez ML; Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA.
  • Shah N; Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA.
  • Kenny TC; Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA.
  • Jenkins EC; Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA.
  • Germain D; Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA. doris.germain@mssm.edu.
Oncogene ; 38(29): 5751-5765, 2019 07.
Article in En | MEDLINE | ID: mdl-31222103
ABSTRACT
We previously reported that the dismutase SOD1 is overexpressed in breast cancer. However, whether SOD1 plays an active role in tumor formation in vivo has never been demonstrated. Further, as luminal cells of normal breast epithelial cells are enriched in SOD1, whether SOD1 is essential for normal mammary gland development has never been determined. We initiated this study to investigate the role of SOD1 in mammary gland tumorigenesis as well as in normal mammary gland development. We crossed the inducible erbB2 (MMTV-iErbB2) and Wnt (MMTV-Wnt) transgenic mice to the SOD1 heterozygote or knockout mice. Our results show that SOD1 is essential for oncogene-driven proliferation, but not normal proliferation of the mammary gland associated with pregnancy or other normal proliferative tissues such as skin and intestines. We show that activation of the oncogene ErbB2 is associated with increased ROS and that high ROS sub-population of ErbB2 cancer cells show elevated SOD1. In the same cells, decrease in SOD1 is associated with an elevation in both apoptosis as well as oncogene-induced senescence. Based on these results, we suggest that SOD1 carries a housekeeping function that maintains ROS levels below a threshold that supports oncogene-dependent proliferation, while allowing escape from oncogene-induced senescence, independently of the oncogene driving tumor formation. These results identify SOD1 as an ideal target for cancer therapy as SOD1 inhibitors hold the potential to prevent the growth of cancers cells of diverse genotypes, activate multiple modes of cell death therefore making acquired resistance more difficult, while sparing normal tissues.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oncogenes / Mammary Neoplasms, Animal / Cell Proliferation / Carcinogenesis / Superoxide Dismutase-1 Limits: Animals / Female / Humans / Pregnancy Language: En Journal: Oncogene Journal subject: BIOLOGIA MOLECULAR / NEOPLASIAS Year: 2019 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oncogenes / Mammary Neoplasms, Animal / Cell Proliferation / Carcinogenesis / Superoxide Dismutase-1 Limits: Animals / Female / Humans / Pregnancy Language: En Journal: Oncogene Journal subject: BIOLOGIA MOLECULAR / NEOPLASIAS Year: 2019 Document type: Article Affiliation country: United States
...