Your browser doesn't support javascript.
loading
Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux.
Willers, Clarissa; Svitina, Hanna; Rossouw, Michael J; Swanepoel, Roan A; Hamman, Josias H; Gouws, Chrisna.
Affiliation
  • Willers C; Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
  • Svitina H; Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
  • Rossouw MJ; Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
  • Swanepoel RA; Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
  • Hamman JH; Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
  • Gouws C; Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa. chrisna.gouws@nwu.ac.za.
J Cancer Res Clin Oncol ; 145(8): 1949-1976, 2019 Aug.
Article in En | MEDLINE | ID: mdl-31292714
ABSTRACT

PURPOSE:

Efflux transporters of the adenosine triphosphate-binding cassette (ABC)-superfamily play an important role in the development of multidrug resistance (multidrug resistant; MDR) in cancer. The overexpression of these transporters can directly contribute to the failure of chemotherapeutic drugs. Several in vitro and in vivo models exist to screen for the efficacy of chemotherapeutic drugs against MDR cancer, specifically facilitated by efflux transporters.

RESULTS:

This article reviews a range of efflux transporter-based MDR models used to test the efficacy of compounds to overcome MDR in cancer. These models are classified as either in vitro or in vivo and are further categorised as the most basic, conventional models or more complex and advanced systems. Each model's origin, advantages and limitations, as well as specific efflux transporter-based MDR applications are discussed. Accordingly, future modifications to existing models or new research approaches are suggested to develop prototypes that closely resemble the true nature of multidrug resistant cancer in the human body.

CONCLUSIONS:

It is evident from this review that a combination of both in vitro and in vivo preclinical models can provide a better understanding of cancer itself, than using a single model only. However, there is still a clear lack of progression of these models from basic research to high-throughput clinical practice.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Drug Screening Assays, Antitumor / Drug Resistance, Multiple / ATP-Binding Cassette Transporters / Drug Resistance, Neoplasm / Models, Biological / Antineoplastic Agents Type of study: Prognostic_studies Limits: Humans Language: En Journal: J Cancer Res Clin Oncol Year: 2019 Document type: Article Affiliation country: South Africa

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Drug Screening Assays, Antitumor / Drug Resistance, Multiple / ATP-Binding Cassette Transporters / Drug Resistance, Neoplasm / Models, Biological / Antineoplastic Agents Type of study: Prognostic_studies Limits: Humans Language: En Journal: J Cancer Res Clin Oncol Year: 2019 Document type: Article Affiliation country: South Africa
...