Your browser doesn't support javascript.
loading
Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation.
Yang, Yang; Pham, Ngoc Duy; Yao, Disheng; Fan, Lijuan; Hoang, Minh Tam; Tiong, Vincent Tiing; Wang, Zhaoxiang; Zhu, Huaiyong; Wang, Hongxia.
Affiliation
  • Yang Y; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology , Brisbane 4001 , Australia.
  • Pham ND; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology , Brisbane 4001 , Australia.
  • Yao D; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology , Brisbane 4001 , Australia.
  • Fan L; Key Laboratory for Renewable Energy, Institute of Physics , Chinese Academy of Sciences , P.O. Box 603, Beijing 100190 , China.
  • Hoang MT; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology , Brisbane 4001 , Australia.
  • Tiong VT; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology , Brisbane 4001 , Australia.
  • Wang Z; Key Laboratory for Renewable Energy, Institute of Physics , Chinese Academy of Sciences , P.O. Box 603, Beijing 100190 , China.
  • Zhu H; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology , Brisbane 4001 , Australia.
  • Wang H; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology , Brisbane 4001 , Australia.
ACS Appl Mater Interfaces ; 11(31): 28431-28441, 2019 Aug 07.
Article in En | MEDLINE | ID: mdl-31311262
A carbon electrode with low cost and high stability exhibited competitiveness for its practical application in organic-inorganic hybrid perovskite solar cells (PSCs). Nonetheless, issues such as poor interface contact with an adjacent perovskite layer and obvious hysteresis phenomenon are bottlenecks that need to be overcome to make carbon-based PSCs (C-PSCs) more attractive in practice. Herein, we report an effective method to enhance the interfacial charge transport of C-PSCs by introducing the CuSCN material into the device. Two types of CuSCN-assisted devices were studied in this work. One was based on the deposition of an ultrathin CuSCN layer between the perovskite absorber layer and the carbon cathode (PSK/CuSCN/C), and the other was by infiltrating CuSCN solution into the carbon film (PSK/C-CuSCN) by taking advantage of the macroporous structure of the carbon. We have found that the CuSCN incorporation by both methods can effectively address the hysteretic feature in planar C-PSCs. The origin for the hysteresis evolution was unraveled by the investigation of the energy alignment and the kinetics of interfacial charge transfer and hole trap-state density. The results have shown that both types of CuSCN-containing devices showed improved interfacial charge carrier extraction, suppressed carrier recombination, reduced trap-state density, and enhanced charge transport, leading to negligible hysteresis. Furthermore, the CuSCN-incorporated C-PSCs demonstrated enhanced device stability. The power conversion efficiency remained 98 and 91% of the initial performance (13.6 and 13.4%) for PSK/CuSCN/C and PSK/C-CuSCN, respectively, after being stored under a high humidity (75-85%) environment for 10 days. The devices also demonstrated extraordinary long-term stability with a negligible performance drop after being stored in air (relative humidity: 33-35%) for 90 days.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2019 Document type: Article Affiliation country: Australia Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2019 Document type: Article Affiliation country: Australia Country of publication: United States