Your browser doesn't support javascript.
loading
Hemodynamic Effects on Particle Targeting in the Arterial Bifurcation for Different Magnet Positions.
Bernad, Sandor I; Susan-Resiga, Daniela; Bernad, Elena S.
Affiliation
  • Bernad SI; Centre for Fundamental and Advanced Technical Research, Romanian Academy-Timisoara Branch, Mihai Viteazul Str. 24, RO-300223 Timisoara, Romania. sandor.bernad@upt.ro.
  • Susan-Resiga D; Centre for Fundamental and Advanced Technical Research, Romanian Academy-Timisoara Branch, Mihai Viteazul Str. 24, RO-300223 Timisoara, Romania.
  • Bernad ES; Faculty of Physics, West University of Timisoara, Vasile Parvan Str. 1, RO-300222 Timisoara, Romania.
Molecules ; 24(13)2019 Jul 09.
Article in En | MEDLINE | ID: mdl-31324029
ABSTRACT
The present study investigated the possibilities and feasibility of drug targeting for an arterial bifurcation lesion to influence the host healing response. A micrometer sized iron particle was used only to model the magnetic carrier in the experimental investigation (not intended for clinical use), to demonstrate the feasibility of the particle targeting at the lesion site and facilitate the new experimental investigations using coated superparamagnetic iron oxide nanoparticles. Magnetic fields were generated by a single permanent external magnet (ferrite magnet). Artery bifurcation exerts severe impacts on drug distribution, both in the main vessel and the branches, practically inducing an uneven drug concentration distribution in the bifurcation lesion area. There are permanently positioned magnets in the vicinity of the bifurcation near the diseased area. The generated magnetic field induced deviation of the injected ferromagnetic particles and were captured onto the vessel wall of the test section. To increase the particle accumulation in the targeted region and consequently avoid the polypharmacology (interaction of the injected drug particles with multiple target sites), it is critical to understand flow hemodynamics and the correlation between flow structure, magnetic field gradient, and spatial position.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arteries / Drug Delivery Systems / Magnetite Nanoparticles / Magnetic Fields / Theranostic Nanomedicine / Hemodynamics Language: En Journal: Molecules Journal subject: BIOLOGIA Year: 2019 Document type: Article Affiliation country: Romania

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arteries / Drug Delivery Systems / Magnetite Nanoparticles / Magnetic Fields / Theranostic Nanomedicine / Hemodynamics Language: En Journal: Molecules Journal subject: BIOLOGIA Year: 2019 Document type: Article Affiliation country: Romania