Your browser doesn't support javascript.
loading
Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production.
Acharya, B; Alexandre, J; Baines, S; Benes, P; Bergmann, B; Bernabéu, J; Bevan, A; Branzas, H; Campbell, M; Cecchini, S; Cho, Y M; de Montigny, M; De Roeck, A; Ellis, J R; El Sawy, M; Fairbairn, M; Felea, D; Frank, M; Hays, J; Hirt, A M; Janecek, J; Kim, D-W; Korzenev, A; Lacarrère, D H; Lee, S C; Leroy, C; Levi, G; Lionti, A; Mamuzic, J; Margiotta, A; Mauri, N; Mavromatos, N E; Mermod, P; Mieskolainen, M; Millward, L; Mitsou, V A; Orava, R; Ostrovskiy, I; Papavassiliou, J; Parker, B; Patrizii, L; Pavalas, G E; Pinfold, J L; Popa, V; Pozzato, M; Pospisil, S; Rajantie, A; Ruiz de Austri, R; Sahnoun, Z; Sakellariadou, M.
Affiliation
  • Acharya B; Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, United Kingdom.
  • Alexandre J; Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, United Kingdom.
  • Baines S; Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, United Kingdom.
  • Benes P; IEAP, Czech Technical University in Prague, Czech Republic.
  • Bergmann B; IEAP, Czech Technical University in Prague, Czech Republic.
  • Bernabéu J; IFIC, Universitat de València-CSIC, Valencia, Spain.
  • Bevan A; School of Physics and Astronomy, Queen Mary University of London, United Kingdom.
  • Branzas H; Institute of Space Science, Bucharest-Magurele, Romania.
  • Campbell M; Experimental Physics Department, CERN, Geneva, Switzerland.
  • Cecchini S; INFN, Section of Bologna, Bologna, Italy.
  • Cho YM; Physics Department, Konkuk University, Seoul, Korea.
  • de Montigny M; Physics Department, University of Alberta, Edmonton, Alberta, Canada.
  • De Roeck A; Experimental Physics Department, CERN, Geneva, Switzerland.
  • Ellis JR; Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, United Kingdom.
  • El Sawy M; Theoretical Physics Department, CERN, Geneva, Switzerland.
  • Fairbairn M; Experimental Physics Department, CERN, Geneva, Switzerland.
  • Felea D; Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, United Kingdom.
  • Frank M; Institute of Space Science, Bucharest-Magurele, Romania.
  • Hays J; Department of Physics, Concordia University, Montréal, Québec, Canada.
  • Hirt AM; School of Physics and Astronomy, Queen Mary University of London, United Kingdom.
  • Janecek J; Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland-Associate member.
  • Kim DW; IEAP, Czech Technical University in Prague, Czech Republic.
  • Korzenev A; Physics Department, Gangneung-Wonju National University, Gangneung, Republic of Korea.
  • Lacarrère DH; Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland.
  • Lee SC; Experimental Physics Department, CERN, Geneva, Switzerland.
  • Leroy C; Physics Department, Gangneung-Wonju National University, Gangneung, Republic of Korea.
  • Levi G; Département de Physique, Université de Montréal, Québec, Canada.
  • Lionti A; INFN, Section of Bologna and Department of Physics and Astronomy, University of Bologna, Italy.
  • Mamuzic J; Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland.
  • Margiotta A; IFIC, Universitat de València-CSIC, Valencia, Spain.
  • Mauri N; INFN, Section of Bologna and Department of Physics and Astronomy, University of Bologna, Italy.
  • Mavromatos NE; INFN, Section of Bologna, Bologna, Italy.
  • Mermod P; Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, United Kingdom.
  • Mieskolainen M; Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland.
  • Millward L; Physics Department, University of Helsinki, Helsinki, Finland.
  • Mitsou VA; School of Physics and Astronomy, Queen Mary University of London, United Kingdom.
  • Orava R; IFIC, Universitat de València-CSIC, Valencia, Spain.
  • Ostrovskiy I; Physics Department, University of Helsinki, Helsinki, Finland.
  • Papavassiliou J; Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama, USA.
  • Parker B; IFIC, Universitat de València-CSIC, Valencia, Spain.
  • Patrizii L; Institute for Research in Schools, Canterbury, United Kingdom.
  • Pavalas GE; INFN, Section of Bologna, Bologna, Italy.
  • Pinfold JL; Institute of Space Science, Bucharest-Magurele, Romania.
  • Popa V; Physics Department, University of Alberta, Edmonton, Alberta, Canada.
  • Pozzato M; Institute of Space Science, Bucharest-Magurele, Romania.
  • Pospisil S; INFN, Section of Bologna, Bologna, Italy.
  • Rajantie A; IEAP, Czech Technical University in Prague, Czech Republic.
  • Ruiz de Austri R; Department of Physics, Imperial College London, United Kingdom.
  • Sahnoun Z; IFIC, Universitat de València-CSIC, Valencia, Spain.
  • Sakellariadou M; INFN, Section of Bologna, Bologna, Italy.
Phys Rev Lett ; 123(2): 021802, 2019 Jul 12.
Article in En | MEDLINE | ID: mdl-31386510
ABSTRACT
MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb^{-1} of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, ½, and 1 are considered and both velocity-independent and-dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2019 Document type: Article Affiliation country: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2019 Document type: Article Affiliation country: United kingdom
...