Your browser doesn't support javascript.
loading
Resonant Behavior in a Periodically Forced Nonisothermal Oregonator.
García-Selfa, David; Muñuzuri, Alberto P; Pérez-Mercader, Juan; Simakov, David S A.
Affiliation
  • García-Selfa D; Group of Nonlinear Physics , Universidad de Santiago de Compostela , Campus Sur , 15782 Santiago de Compostela , Spain.
  • Muñuzuri AP; Group of Nonlinear Physics , Universidad de Santiago de Compostela , Campus Sur , 15782 Santiago de Compostela , Spain.
  • Pérez-Mercader J; Department of Earth and Planetary Sciences, Origins of Life Initiative , Harvard University , Cambridge , Massachusetts 02138 , United States.
  • Simakov DSA; Department of Earth and Planetary Sciences, Origins of Life Initiative , Harvard University , Cambridge , Massachusetts 02138 , United States.
J Phys Chem A ; 123(38): 8083-8088, 2019 Sep 26.
Article in En | MEDLINE | ID: mdl-31441660
Nonisothermal chemical oscillators are poorly studied systems because chemical oscillations are conventionally studied under isothermal conditions. Coupling chemical reactions with heat generation and removal in a nonisothermal oscillatory system can lead to a highly nontrivial nonlinear dynamic behavior. For the current study, we considered the three-variable Oregonator model with the temperature incorporated as a variable (not a parameter), thus adding an energy balance to the set of equations. The effect of temperature on reaction rates is included through the temperature-dependent reaction rate coefficients (Arrhenius law). To model a continuous operation in a laboratory environment, the system was subjected to external forcing through the coolant temperature and infrared irradiation. By conducting numerical simulations and parametric studies, we found that the system is capable of a resonant behavior exhibiting induced oscillations. Our findings indicate that an external source of heat (e.g., via an infrared light emitting diode) can be used to induce a Hopf bifurcation under resonant conditions in an experimental Belousov-Zhabotinsky reactor.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Phys Chem A Journal subject: QUIMICA Year: 2019 Document type: Article Affiliation country: Spain Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Phys Chem A Journal subject: QUIMICA Year: 2019 Document type: Article Affiliation country: Spain Country of publication: United States