Your browser doesn't support javascript.
loading
Charged Nanoparticles Quench the Propulsion of Active Janus Colloids.
Issa, Marola W; Baumgartner, Nicky R; Kalil, Mohammed A; Ryan, Shawn D; Wirth, Christopher L.
Affiliation
  • Issa MW; Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering and Department of Mathematics and Statistics, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States.
  • Baumgartner NR; Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering and Department of Mathematics and Statistics, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States.
  • Kalil MA; Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering and Department of Mathematics and Statistics, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States.
  • Ryan SD; Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering and Department of Mathematics and Statistics, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States.
  • Wirth CL; Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering and Department of Mathematics and Statistics, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States.
ACS Omega ; 4(8): 13034-13041, 2019 Aug 20.
Article in En | MEDLINE | ID: mdl-31460430
ABSTRACT
Active colloidal particles regularly interact with surfaces in applications ranging from microfluidics to sensing. Recent work has revealed the complex nature of these surface interactions for active particles. Herein, we summarize experiments and simulations that show the impact of charged nanoparticles on the propulsion of an active colloid near a boundary. Adding charged nanoparticles not only decreased the average separation distance of a passive colloid because of depletion attraction as expected but also decreased the apparent propulsion of a Janus colloid to near zero. Complementary agent-based simulations considering the impact of hydrodynamics for active Janus colloids were conducted in the range of separation distances inferred from experiment. These simulations showed that propulsion speed decreased monotonically with decreasing average separation distance. Although the trend found in experiments and simulations was in qualitative agreement, there was still a significant difference in the magnitude of speed reduction. The quantitative difference was attributed to the influence of charged nanoparticles on the conductivity of the active particle suspension. Follow-up experiments delineating the impact of depletion and conductivity showed that both contribute to the reduction of speed for an active Janus particle. The experimental and simulated data suggests that it is necessary to consider the synergistic effects between various mechanisms influencing interactions experienced by an active particle near a boundary.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Qualitative_research Language: En Journal: ACS Omega Year: 2019 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Qualitative_research Language: En Journal: ACS Omega Year: 2019 Document type: Article Affiliation country: United States