Photobiomodulation therapy decreases free fatty acid generation and release in adipocytes to ameliorate insulin resistance in type 2 diabetes.
Cell Signal
; 67: 109491, 2020 03.
Article
in En
| MEDLINE
| ID: mdl-31809873
Excessive circulating free fatty acids (FFA) cause insulin resistance in peripheral tissues by inhibiting the proximal insulin signaling pathway. White adipose tissue (WAT) is a primary source of FFA generation and release through triglyceride (TG) hydrolysis. Thus, reducing excessive lipolysis in adipocytes ameliorates whole-body insulin resistance in type 2 diabetes. Here, we found that a noninvasive photobiomodulation therapy (PBMT), decreased FFA generation and release in WATs from high-fat diet (HFD)-fed mice and diabetic db/db mice. Meanwhile, plasma FFA and TG levels were reduced in two mouse models after PBMT. PBMT promoted mitochondrial reactive oxygen species (ROS) generation, which inhibited phosphatase and tensin homologue (PTEN) and promoted protein kinase B (AKT) activation. Photoactivation of AKT inhibited the transcriptional activity of Forkhead box transcription factor O1 (FoxO1), reducing expression of lipolytic enzymes and FFA generation and release. Eliminating ROS elimination or inhibiting AKT blocked the effects of the laser therapy in vivo and in vitro. Taken together, PBMT suppresses FFA generation and release in insulin-resistant adipocytes, contributing to improvement of insulin resistance in mouse models of type 2 diabetes.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Insulin Resistance
/
Adipocytes
/
Low-Level Light Therapy
/
Diabetes Mellitus, Type 2
/
Fatty Acids, Nonesterified
Type of study:
Prognostic_studies
Limits:
Animals
/
Humans
/
Male
Language:
En
Journal:
Cell Signal
Year:
2020
Document type:
Article
Affiliation country:
China
Country of publication:
United kingdom