Your browser doesn't support javascript.
loading
Preoperative prediction of tumour deposits in rectal cancer by an artificial neural network-based US radiomics model.
Chen, Li-Da; Li, Wei; Xian, Meng-Fei; Zheng, Xin; Lin, Yuan; Liu, Bao-Xian; Lin, Man-Xia; Li, Xin; Zheng, Yan-Ling; Xie, Xiao-Yan; Lu, Ming-De; Kuang, Ming; Xu, Jian-Bo; Wang, Wei.
Affiliation
  • Chen LD; Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
  • Li W; Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
  • Xian MF; Department of Medical Ultrasonics, East Division, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
  • Zheng X; Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
  • Lin Y; Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
  • Liu BX; Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
  • Lin MX; Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
  • Li X; Research Center of GE Healthcare, Shanghai, People's Republic of China.
  • Zheng YL; Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
  • Xie XY; Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
  • Lu MD; Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
  • Kuang M; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
  • Xu JB; Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
  • Wang W; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
Eur Radiol ; 30(4): 1969-1979, 2020 Apr.
Article in En | MEDLINE | ID: mdl-31828415
OBJECTIVE: To develop a machine learning-based ultrasound (US) radiomics model for predicting tumour deposits (TDs) preoperatively. METHODS: From December 2015 to December 2017, 127 patients with rectal cancer were prospectively enrolled and divided into training and validation sets. Endorectal ultrasound (ERUS) and shear-wave elastography (SWE) examinations were conducted for each patient. A total of 4176 US radiomics features were extracted for each patient. After the reduction and selection of US radiomics features , a predictive model using an artificial neural network (ANN) was constructed in the training set. Furthermore, two models (one incorporating clinical information and one based on MRI radiomics) were developed. These models were validated by assessing their diagnostic performance and comparing the areas under the curve (AUCs) in the validation set. RESULTS: The training and validation sets included 29 (33.3%) and 11 (27.5%) patients with TDs, respectively. A US radiomics ANN model was constructed. The model for predicting TDs showed an accuracy of 75.0% in the validation cohort. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and AUC were 72.7%, 75.9%, 53.3%, 88.0% and 0.743, respectively. For the model incorporating clinical information, the AUC improved to 0.795. Although the AUC of the US radiomics model was improved compared with that of the MRI radiomics model (0.916 vs. 0.872) in the 90 patients with both ultrasound and MRI data (which included both the training and validation sets), the difference was nonsignificant (p = 0.384). CONCLUSIONS: US radiomics may be a potential model to accurately predict TDs before therapy. KEY POINTS: • We prospectively developed an artificial neural network model for predicting tumour deposits based on US radiomics that had an accuracy of 75.0%. • The area under the curve of the US radiomics model was improved than that of the MRI radiomics model (0.916 vs. 0.872), but the difference was not significant (p = 0.384). • The US radiomics-based model may potentially predict TDs accurately before therapy, but this model needs further validation with larger samples.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Rectal Neoplasms / Magnetic Resonance Imaging / Ultrasonography / Neural Networks, Computer / Machine Learning Type of study: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limits: Adult / Aged / Female / Humans / Male / Middle aged Language: En Journal: Eur Radiol Journal subject: RADIOLOGIA Year: 2020 Document type: Article Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Rectal Neoplasms / Magnetic Resonance Imaging / Ultrasonography / Neural Networks, Computer / Machine Learning Type of study: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limits: Adult / Aged / Female / Humans / Male / Middle aged Language: En Journal: Eur Radiol Journal subject: RADIOLOGIA Year: 2020 Document type: Article Country of publication: Germany