FRET efficiency measurement in a molecular tension probe with a low-cost frequency-domain fluorescence lifetime imaging microscope.
J Biomed Opt
; 24(12): 1-11, 2019 12.
Article
in En
| MEDLINE
| ID: mdl-31884745
We demonstrate the possibility of measuring FRET efficiency with a low-cost frequency-domain fluorescence lifetime imaging microscope (FD-FLIM). The system utilizes single-frequency-modulated excitation, which enables the use of cost-effective laser sources and electronics, simplification of data acquisition and analysis, and a dual-channel detection capability. Following calibration with coumarin 6, we measured the apparent donor lifetime in mTFP1-mVenus FRET standards expressed in living cells. We evaluated the system's sensitivity by differentiating the short and long lifetimes of mTFP1 corresponding to the known standards' high and low FRET efficiency, respectively. Furthermore, we show that the lifetime of the vinculin tension sensor, VinTS, at focal adhesions (2.30 ± 0.16 ns) is significantly (p < 10 - 6) longer than the lifetime of the unloaded TSMod probe (2.02 ± 0.16 ns). The pixel dwell time was 6.8 µs for samples expressing the FRET standards, with signal typically an order of magnitude higher than VinTS. The apparent FRET efficiency (EFRETapp ) of the standards, calculated from the measured apparent lifetime, was linearly related to their known FRET efficiency by a factor of 0.92 to 0.99 (R2 = 0.98). This relationship serves as a calibration curve to convert apparent FRET to true FRET and circumvent the need to measure multiexponential lifetime decays. This approach yielded a FRET efficiency of 18% to 19.5%, for VinTS, in agreement with published values. Taken together, our results demonstrate a cost-effective, fast, and sensitive FD-FLIM approach with the potential to facilitate applications of FLIM in mechanobiology and FRET-based biosensing.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Molecular Probes
/
Fluorescence Resonance Energy Transfer
/
Microscopy, Fluorescence
Type of study:
Health_economic_evaluation
Limits:
Animals
Language:
En
Journal:
J Biomed Opt
Journal subject:
ENGENHARIA BIOMEDICA
/
OFTALMOLOGIA
Year:
2019
Document type:
Article
Affiliation country:
United States
Country of publication:
United States