Your browser doesn't support javascript.
loading
Ultrahigh and Durable Volumetric Lithium/Sodium Storage Enabled by a Highly Dense Graphene-Encapsulated Nitrogen-Doped Carbon@Sn Compact Monolith.
Li, Yunyong; Ou, Changzhi; Zhu, Junlu; Liu, Zhonggang; Yu, Jianlin; Li, Wenwu; Zhang, Haiyan; Zhang, Qiaobao; Guo, Zaiping.
Affiliation
  • Li Y; Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Ou C; Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Zhu J; Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Liu Z; Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Yu J; Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Li W; Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Zhang H; Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Zhang Q; Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China.
  • Guo Z; Institute for Superconducting and Electronic Materials, School of Mechanical, Materials, Mechatronics and Biomedical Engineering, University of Wollongong, North Wollongong, NSW 2500, Australia.
Nano Lett ; 20(3): 2034-2046, 2020 Mar 11.
Article in En | MEDLINE | ID: mdl-32019311
Tin-based composites hold promise as anodes for high-capacity lithium/sodium-ion batteries (LIBs/SIBs); however, it is necessary to use carbon coated nanosized tin to solve the issues related to large volume changes during electrochemical cycling, thus leading to the low volumetric capacity for tin-based composites due to their low packing density. Herein, we design a highly dense graphene-encapsulated nitrogen-doped carbon@Sn (HD N-C@Sn/G) compact monolith with Sn nanoparticles double-encapsulated by N-C and graphene, which exhibits a high density of 2.6 g cm-3 and a high conductivity of 212 S m-1. The as-obtained HD N-C@Sn/G monolith anode exhibits ultrahigh and durable volumetric lithium/sodium storage. Specifically, it delivers a high volumetric capacity of 2692 mAh cm-3 after 100 cycles at 0.1 A g-1 and an ultralong cycling stability exceeding 1500 cycles at 1.0 A g-1 with only 0.019% capacity decay per cycle in lithium-ion batteries. Besides, in situ TEM and ex situ SEM have revealed that the unique double-encapsulated structure effectively mitigates drastic volume variation of the tin nanoparticles during electrode cycling. Furthermore, the full cell using HD N-C@Sn/G as an anode and LiCoO2 as a cathode displays a superior cycling stability. This work provides a new avenue and deep insight into the design of high-volumetric-capacity alloy-based anodes with ultralong cycle life.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nano Lett Year: 2020 Document type: Article Affiliation country: China Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nano Lett Year: 2020 Document type: Article Affiliation country: China Country of publication: United States