Factors controlling the degradation of hydrogen peroxide in river water, and the role of riverbed sand.
Sci Total Environ
; 716: 136971, 2020 May 10.
Article
in En
| MEDLINE
| ID: mdl-32044480
Diurnal changes of H2O2 in river water during mid-summer were investigated. H2O2 in river water increased with the increase in intensity of solar radiation in the morning, and reached a maximum at 14:00, although solar radiation reached a maximum around 12:00. In the afternoon, a gradual decrease in H2O2 was observed, and H2O2 reached a minimum just before sunrise. Degradation rate constants determined using unfiltered river water samples were 0.081-0.161 h-1, corresponding to a half-life of 4.3-8.5 h. We simulated diurnal changes in H2O2 using a simple formation, accumulation, and degradation model for static water using formation and degradation rate constants. The results of the modeling suggested that in situ degradation rate constants in rivers could be faster than those determined for unfiltered river water samples. Experiments using river sand indicated that riverbed sand could play an important role in H2O2 decay in rivers. We discussed the decomposition process of H2O2 in rivers.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Type of study:
Prognostic_studies
Language:
En
Journal:
Sci Total Environ
Year:
2020
Document type:
Article
Affiliation country:
Japan
Country of publication:
Netherlands