A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo.
Nat Genet
; 52(2): 146-159, 2020 02.
Article
in En
| MEDLINE
| ID: mdl-32060489
In many repeat diseases, such as Huntington's disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSß. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Huntington Disease
/
Quinolones
/
Trinucleotide Repeat Expansion
/
Huntingtin Protein
/
Naphthyridines
Type of study:
Prognostic_studies
Limits:
Animals
/
Humans
/
Male
Language:
En
Journal:
Nat Genet
Journal subject:
GENETICA MEDICA
Year:
2020
Document type:
Article
Affiliation country:
Japan
Country of publication:
United States