Your browser doesn't support javascript.
loading
Ridge-furrow mulching system and supplementary irrigation can reduce the greenhouse gas emission intensity.
Xu, Yueyue; Wang, Yingxin; Ma, Xiangcheng; Liu, Xian; Zhang, Peng; Cai, Tie; Jia, Zhikuan.
Affiliation
  • Xu Y; College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern loess Plateau, Min
  • Wang Y; College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern loess Plateau, Min
  • Ma X; College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern loess Plateau, Min
  • Liu X; Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Zhang P; College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern loess Plateau, Min
  • Cai T; College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern loess Plateau, Min
  • Jia Z; College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern loess Plateau, Min
Sci Total Environ ; 717: 137262, 2020 May 15.
Article in En | MEDLINE | ID: mdl-32084692
In this study, in order to explore the greenhouse gas emissions and global warming potential (GWP) in winter wheat fields under the ridge-furrow mulching system (RF) with supplementary irrigation, three rainfall conditions (heavy rainfall = 275 mm, normal rainfall = 200 mm, and light rainfall = 125 mm) and four irrigation treatments (150, 75, 37.5, and 0 mm) were simulated during the growth period. Traditional flat planting (TF) was used as the control and we determined the emissions of N2O, CO2, and CH4, as well as the GWP and greenhouse gas emission intensity (GHGI). The results obtained after three years (October 2016 to June 2019) showed that when the amount of irrigation was the same during the winter wheat growth period, the N2O emission flux, CO2 emission flux, and GHGI under RF decreased by 3.30-23.78%, 5.93-6.45%, and 5.01-23.72% with rainfall at 275 mm, respectively, compared with those under TF. Under the same level of supplementary irrigation, the N2O emission flux, CO2 emission flux, and GHGI decreased by 0.8-4.18%, 5.05-13.53%, and 7.83-13.72%, respectively, with rainfall at 200 mm, and they decreased by 17.49-32.46%, 25.57-35.35%, and 6.22-30.20% with rainfall at 125 mm. Under the three rainfall conditions, the absorption of CH4 in the winter wheat field increased as the supplementary irrigation decreased. Our results showed that the RF system can satisfy the goal of achieving high yields and saving water, as well as reducing the GHGI to contribute less to global climate warming as an environmentally friendly irrigation method.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2020 Document type: Article Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2020 Document type: Article Country of publication: Netherlands