Your browser doesn't support javascript.
loading
Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs.
Call, Lee; Molina, Tiffany; Stoll, Barbara; Guthrie, Greg; Chacko, Shaji; Plat, Jogchum; Robinson, Jason; Lin, Sen; Vonderohe, Caitlin; Mohammad, Mahmoud; Kunichoff, Dennis; Cruz, Stephanie; Lau, Patricio; Premkumar, Muralidhar; Nielsen, Jon; Fang, Zhengfeng; Olutoye, Oluyinka; Thymann, Thomas; Britton, Robert; Sangild, Per; Burrin, Douglas.
Affiliation
  • Call L; Pediatrics, Gastroenterology, and Nutrition, United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX.
  • Molina T; Pediatrics-Neonatology, Baylor College of Medicine, Houston, TX.
  • Stoll B; Pediatrics, Gastroenterology, and Nutrition, United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX.
  • Guthrie G; Pediatrics, Gastroenterology, and Nutrition, United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX.
  • Chacko S; Pediatrics, Gastroenterology, and Nutrition, United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX.
  • Plat J; Department Human Biology and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
  • Robinson J; Pediatrics, Gastroenterology, and Nutrition, United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX.
  • Lin S; Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.
  • Vonderohe C; Pediatrics, Gastroenterology, and Nutrition, United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX.
  • Mohammad M; Pediatrics, Gastroenterology, and Nutrition, United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX.
  • Kunichoff D; Pediatrics, Gastroenterology, and Nutrition, United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX.
  • Cruz S; Division of Pediatric Surgery, Baylor College of Medicine, Houston, TX.
  • Lau P; Division of Pediatric Surgery, Baylor College of Medicine, Houston, TX.
  • Premkumar M; Pediatrics-Neonatology, Baylor College of Medicine, Houston, TX.
  • Nielsen J; Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark.
  • Fang Z; Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.
  • Olutoye O; Division of Pediatric Surgery, Baylor College of Medicine, Houston, TX.
  • Thymann T; Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark.
  • Britton R; Alkek Center for Microbiome and Metagenomics Research, Baylor College of Medicine, Houston, TX.
  • Sangild P; Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark.
  • Burrin D; Pediatrics, Gastroenterology, and Nutrition, United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX. Electronic address: mailto:doug.burrin@usda.gov.
J Lipid Res ; 61(7): 1038-1051, 2020 07.
Article in En | MEDLINE | ID: mdl-32350078
ABSTRACT
Multi-component lipid emulsions, rather than soy-oil emulsions, prevent cholestasis by an unknown mechanism. Here, we quantified liver function, bile acid pools, and gut microbial and metabolite profiles in premature parenterally fed pigs given a soy-oil lipid emulsion, Intralipid (IL), a multi component lipid emulsion, SMOFlipid (SMOF), a novel emulsion with a modified fatty-acid composition [experimental emulsion (EXP)], or a control enteral diet (ENT) for 22 days. We assayed serum cholestasis markers, measured total bile acid levels in plasma, liver, and gut contents, and analyzed colonic bacterial 16S rRNA gene sequences and metabolomic profiles. Serum cholestasis markers (i.e., bilirubin, bile acids, and γ-glutamyl transferase) were highest in IL-fed pigs and normalized in those given SMOF, EXP, or ENT. Gut bile acid pools were lowest in the IL treatment and were increased in the SMOF and EXP treatments and comparable to ENT. Multiple bile acids, especially their conjugated forms, were higher in the colon contents of SMOF and EXP than in IL pigs. The colonic microbial communities of SMOF and EXP pigs had lower relative abundance of several gram-positive anaerobes, including Clostridrium XIVa, and higher abundance of Enterobacteriaceae than those of IL and ENT pigs. Differences in lipid and microbial-derived compounds were also observed in colon metabolite profiles. These results indicate that multi-component lipid emulsions prevent cholestasis and restore enterohepatic bile flow in association with gut microbial and metabolomic changes. We conclude that sustained bile flow induced by multi-component lipid emulsions likely exerts a dominant effect in reducing bile acid-sensitive gram-positive bacteria.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bile Acids and Salts / Cholestasis / Premature Birth / Lipid Metabolism / Microbiota Limits: Animals Language: En Journal: J Lipid Res Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bile Acids and Salts / Cholestasis / Premature Birth / Lipid Metabolism / Microbiota Limits: Animals Language: En Journal: J Lipid Res Year: 2020 Document type: Article