Your browser doesn't support javascript.
loading
Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO2 Photocatalysis.
Feng, Kai; Wang, Shenghua; Zhang, Dake; Wang, Lu; Yu, Yingying; Feng, Kun; Li, Zhao; Zhu, Zhijie; Li, Chaoran; Cai, Mujin; Wu, Zhiyi; Kong, Ning; Yan, Binhang; Zhong, Jun; Zhang, Xiaohong; Ozin, Geoffrey A; He, Le.
Affiliation
  • Feng K; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Wang S; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Zhang D; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Wang L; Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada.
  • Yu Y; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Feng K; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Li Z; Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada.
  • Zhu Z; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Li C; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Cai M; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Wu Z; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Kong N; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Yan B; Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
  • Zhong J; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Zhang X; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
  • Ozin GA; Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada.
  • He L; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China.
Adv Mater ; 32(24): e2000014, 2020 Jun.
Article in En | MEDLINE | ID: mdl-32390222
ABSTRACT
The efficiency of heterogeneous photocatalysis for converting solar to chemical energy is low on a per photon basis mainly because of the difficulty of capturing and utilizing light across the entire solar spectral wavelength range. This challenge is addressed herein with a plasmonic superstructure, fashioned as an array of nanoscale needles comprising cobalt nanocrystals assembled within a sheath of porous silica grown on a fluorine tin oxide substrate. This plasmonic superstructure can strongly absorb sunlight through different mechanisms including enhanced plasmonic excitation by the hybridization of Co nanoparticles in close proximity, as well as inter- and intra-band transitions. With nearly 100% sunlight harvesting ability, it drives the photothermal hydrogenation of carbon dioxide with a 20-fold rate increase from the silica-supported cobalt catalyst. The present work bridges the gap between strong light-absorbing plasmonic superstructures with photothermal CO2 catalysis toward the complete utilization of the solar energy.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2020 Document type: Article