Your browser doesn't support javascript.
loading
Ammonium is the preferred source of nitrogen for planktonic foraminifer and their dinoflagellate symbionts.
LeKieffre, Charlotte; Spero, Howard J; Fehrenbacher, Jennifer S; Russell, Ann D; Ren, Haojia; Geslin, Emmanuelle; Meibom, Anders.
Affiliation
  • LeKieffre C; Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
  • Spero HJ; UMR CNRS 6112 - LPG-BIAF, Université d'Angers, 49045 Angers Cedex, France.
  • Fehrenbacher JS; Department of Earth and Planetary Sciences, University of California Davis, Davis, CA 95616, USA.
  • Russell AD; College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA.
  • Ren H; Department of Earth and Planetary Sciences, University of California Davis, Davis, CA 95616, USA.
  • Geslin E; Department of Geosciences, National Taiwan University, Taipei, Taiwan.
  • Meibom A; UMR CNRS 6112 - LPG-BIAF, Université d'Angers, 49045 Angers Cedex, France.
Proc Biol Sci ; 287(1929): 20200620, 2020 06 24.
Article in En | MEDLINE | ID: mdl-32546098
ABSTRACT
The symbiotic planktonic foraminifera Orbulina universa inhabits open ocean oligotrophic ecosystems where dissolved nutrients are scarce and often limit biological productivity. It has previously been proposed that O. universa meets its nitrogen (N) requirements by preying on zooplankton, and that its symbiotic dinoflagellates recycle metabolic 'waste ammonium' for their N pool. However, these conclusions were derived from bulk 15N-enrichment experiments and model calculations, and our understanding of N assimilation and exchange between the foraminifer host cell and its symbiotic dinoflagellates remains poorly constrained. Here, we present data from pulse-chase experiments with 13C-enriched inorganic carbon, 15N-nitrate, and 15N-ammonium, as well as a 13C- and 15N- enriched heterotrophic food source, followed by TEM (transmission electron microscopy) coupled to NanoSIMS (nanoscale secondary ion mass spectrometry) isotopic imaging to visualize and quantify C and N assimilation and translocation in the symbiotic system. High levels of 15N-labelling were observed in the dinoflagellates and in foraminiferal organelles and cytoplasm after incubation with 15N-ammonium, indicating efficient ammonium assimilation. Only weak 15N-assimilation was observed after incubation with 15N-nitrate. Feeding foraminifers with 13C- and 15N-labelled food resulted in dinoflagellates that were labelled with 15N, thereby confirming the transfer of 15N-compounds from the digestive vacuoles of the foraminifer to the symbiotic dinoflagellates, likely through recycling of ammonium. These observations are important for N isotope-based palaeoceanographic reconstructions, as they show that δ15N values recorded in the organic matrix in symbiotic species likely reflect ammonium recycling rather than alternative N sources, such as nitrates.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Dinoflagellida / Foraminifera / Ammonium Compounds Limits: Animals Language: En Journal: Proc Biol Sci Journal subject: BIOLOGIA Year: 2020 Document type: Article Affiliation country: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Dinoflagellida / Foraminifera / Ammonium Compounds Limits: Animals Language: En Journal: Proc Biol Sci Journal subject: BIOLOGIA Year: 2020 Document type: Article Affiliation country: Switzerland