Your browser doesn't support javascript.
loading
High Adsorption of Benzoic Acid on Single Walled Carbon Nanotube Bundles.
Li, Shifan; De Silva, Thushani; Arsano, Iskinder; Gallaba, Dinuka; Karunanithy, Robinson; Wasala, Milinda; Zhang, Xianfeng; Sivakumar, Poopalasingam; Migone, Aldo; Tsige, Mesfin; Ma, Xingmao; Talapatra, Saikat.
Affiliation
  • Li S; Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, United States.
  • De Silva T; Department of Physics, Southern Illinois University Carbondale, IL, 62901, Carbondale, United States.
  • Arsano I; Department of Polymer Science, University of Akron, Akron, Ohio, 44325, United States.
  • Gallaba D; Department of Physics, Southern Illinois University Carbondale, IL, 62901, Carbondale, United States.
  • Karunanithy R; Department of Physics, Southern Illinois University Carbondale, IL, 62901, Carbondale, United States.
  • Wasala M; Department of Physics, Southern Illinois University Carbondale, IL, 62901, Carbondale, United States.
  • Zhang X; Department of Physics, Southern Illinois University Carbondale, IL, 62901, Carbondale, United States.
  • Sivakumar P; Department of Physics, Southern Illinois University Carbondale, IL, 62901, Carbondale, United States.
  • Migone A; Department of Physics, Southern Illinois University Carbondale, IL, 62901, Carbondale, United States.
  • Tsige M; Department of Polymer Science, University of Akron, Akron, Ohio, 44325, United States. mtsige@uakron.edu.
  • Ma X; Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, United States. samuelma@tamu.edu.
  • Talapatra S; Department of Physics, Southern Illinois University Carbondale, IL, 62901, Carbondale, United States. saikat@siu.edu.
Sci Rep ; 10(1): 10013, 2020 06 19.
Article in En | MEDLINE | ID: mdl-32561785
ABSTRACT
Removal of harmful chemicals from water is paramount to environmental cleanliness and safety. As such, need for materials that will serve this purpose is in the forefront of environmental research that pertains to water purification. Here we show that bundles of single walled carbon nanotubes (SWNTs), synthesized by direct thermal decomposition of ferrocene (Fe(C5H5)2), can remove emerging contaminants like benzoic acid from water with high efficiencies. Experimental adsorption isotherm studies indicate that the sorption capacity of benzoic acid on these carbon nanotubes (CNTs) can be as high as 375 mg/g, which is significantly higher (in some cases an order of magnitude) than those reported previously for other adsorbents of benzoic acid such as activated carbon cloth, modified bentonite and commercially available graphitized multiwall carbon nanotubes (MWNTs). Our Molecular Dynamics (MD) simulation studies of experimental scenarios provided major insights related to this process of adsorption. The MD simulations indicate that, high binding energy sites present in SWNT bundles are majorly responsible for their enhanced adsorptive behavior compared to isolated MWNTs. These findings indicate that SWNT materials can be developed as scalable materials for efficient removal of environmental contaminants as well as for other sorption-based applications.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2020 Document type: Article Affiliation country: United States Publication country: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2020 Document type: Article Affiliation country: United States Publication country: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM