Your browser doesn't support javascript.
loading
CuO Nanoparticles Alter the Rhizospheric Bacterial Community and Local Nitrogen Cycling for Wheat Grown in a Calcareous Soil.
Guan, Xiangyu; Gao, Xiaoyu; Avellan, Astrid; Spielman-Sun, Eleanor; Xu, Jiang; Laughton, Stephanie; Yun, Jie; Zhang, Yilin; Bland, Garret D; Zhang, Ying; Zhang, Ruirui; Wang, Xusheng; Casman, Elizabeth A; Lowry, Gregory V.
Affiliation
  • Guan X; School of Ocean Sciences, China University of Geosciences, Beijing 100083, P. R. China.
  • Gao X; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Avellan A; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Spielman-Sun E; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Xu J; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Laughton S; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Yun J; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Zhang Y; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Bland GD; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Zhang Y; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Zhang R; School of Ocean Sciences, China University of Geosciences, Beijing 100083, P. R. China.
  • Wang X; School of Ocean Sciences, China University of Geosciences, Beijing 100083, P. R. China.
  • Casman EA; Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Lowry GV; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Environ Sci Technol ; 54(14): 8699-8709, 2020 07 21.
Article in En | MEDLINE | ID: mdl-32579348
ABSTRACT
The application of nanoparticles (NPs) to soils, as either fertilizers or fungicides (e.g., CuO NPs), has been proposed to improve the sustainability of agriculture. The observed effects could result directly from the NP-plant interactions or indirectly through effects on the soil microbiome. The objective of this study was to assess the effects of CuO NPs on the changes in the bacterial community structure and nitrogen-cycling-associated functions in a high pH soil and to correlate these changes with nitrate accumulation, soil parameter changes, and plant growth over 28 days. Triticum aestivum seedlings were exposed to 50 mg/kg CuO NPs, 50 mg/kg CuSO4, or 0.5 mg/kg CuSO4 in a standard soil (Lufa 2.1 soil, pH adjusted to 7.6). While Cu treatments reduced nitrate accumulation in the bulk soil, the effects were opposite in the rhizosphere (the soil influenced by root exudates). While nitrate accumulation in bulk soil negatively correlated with total Cu concentration, part of the nitrate concentration in the rhizosphere was explained by root uptake during plant growth, the rest being modulated by Cu treatments. The abundance of genes involved in the nitrogen cycle in the rhizosphere soil correlated with the ionic copper concentration. The increased nitrate concentration in the rhizosphere correlated with an increase of the gene abundance related to the nitrogen fixation and a decrease of denitrification gene abundance. Microbial diversity in bulk or rhizosphere soil under the different treatments alone could not explain these variations, while differences in the assemblages of bacteria associated with these functional gene abundances gave good insights. This study highlights the complexity of microbial N-related function in the rhizosphere and the need to characterize the rhizosphere soil, plant growth and root activity, NP (bio)transformations, along with microbial networks, to understand the impact of agrochemicals (here CuO NPs) on soil fertility.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil / Nanoparticles Language: En Journal: Environ Sci Technol Year: 2020 Document type: Article Publication country: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil / Nanoparticles Language: En Journal: Environ Sci Technol Year: 2020 Document type: Article Publication country: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA