Your browser doesn't support javascript.
loading
Reinforcement Learning during Adolescence in Rats.
Moin Afshar, Neema; Keip, Alex J; Taylor, Jane R; Lee, Daeyeol; Groman, Stephanie M.
Affiliation
  • Moin Afshar N; Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511.
  • Keip AJ; Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511.
  • Taylor JR; Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511.
  • Lee D; Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06520-8001.
  • Groman SM; The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218.
J Neurosci ; 40(30): 5857-5870, 2020 07 22.
Article in En | MEDLINE | ID: mdl-32601244
The most dynamic period of postnatal brain development occurs during adolescence, the period between childhood and adulthood. Neuroimaging studies have observed morphologic and functional changes during adolescence, and it is believed that these changes serve to improve the functions of circuits that underlie decision-making. Direct evidence in support of this hypothesis, however, has been limited because most preclinical decision-making paradigms are not readily translated to humans. Here, we developed a reversal-learning protocol for the rapid assessment of adaptive choice behavior in dynamic environments in rats as young as postnatal day 30. A computational framework was used to elucidate the reinforcement-learning mechanisms that change in adolescence and into adulthood. Using a cross-sectional and longitudinal design, we provide the first evidence that value-based choice behavior in a reversal-learning task improves during adolescence in male and female Long-Evans rats and demonstrate that the increase in reversal performance is due to alterations in value updating for positive outcomes. Furthermore, we report that reversal-learning trajectories in adolescence reliably predicted reversal performance in adulthood. This novel behavioral protocol provides a unique platform for conducting biological and systems-level analyses of the neurodevelopmental mechanisms of decision-making.SIGNIFICANCE STATEMENT The neurodevelopmental adaptations that occur during adolescence are hypothesized to underlie age-related improvements in decision-making, but evidence to support this hypothesis has been limited. Here, we describe a novel behavioral protocol for rapidly assessing adaptive choice behavior in adolescent rats with a reversal-learning paradigm. Using a computational approach, we demonstrate that age-related changes in reversal-learning performance in male and female Long-Evans rats are linked to specific reinforcement-learning mechanisms and are predictive of reversal-learning performance in adulthood. Our behavioral protocol provides a unique platform for elucidating key components of adolescent brain function.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Reinforcement, Psychology / Reversal Learning / Conditioning, Operant Type of study: Prognostic_studies Limits: Animals / Female / Humans / Male Language: En Journal: J Neurosci Year: 2020 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Reinforcement, Psychology / Reversal Learning / Conditioning, Operant Type of study: Prognostic_studies Limits: Animals / Female / Humans / Male Language: En Journal: J Neurosci Year: 2020 Document type: Article Country of publication: United States