[Effects of Simulated Acid Rain on Soil Fungi Diversity in the Transition Zone of Moso Bamboo and Broadleaf Forest].
Huan Jing Ke Xue
; 41(5): 2476-2484, 2020 May 08.
Article
in Zh
| MEDLINE
| ID: mdl-32608867
Acid rain is an important phenomenon in the context of global climate change, and can strongly influence forest ecology. There have been many studies on the response of plants to acid rain. However, the effect of acid rain on soil microbial communities is still largely unknown. Studying the effects of acid rain on soil microbial community structure is of great significance for predicting the interactive effects of multiple climate factors on forest ecosystems in the future. Moso bamboo (Phyllostachys edulis) is often cultivated not only for its delicious shoots and versatile culms, but also as an important biomass resource in southern China. However, with its robust growth and strong rhizomes, Moso bamboo populations have been expanding rapidly into adjacent forests. Different perturbation regimes, including disturbance caused by simulated acid rain, can have significant effects on a soil fungal community in response to Moso bamboo invasion into native broadleaf forest. To explore the effect of acid rain on a mixed forest of Moso bamboo and broadleaf soil fungi diversity, and to understand the relationship between fungal community structure and acid rain stress, a mixed forest of Moso bamboo and broadleaf (transition forest) in Zhejiang Tianmu Mountain Nature Reserve was taken as the study site, and simulated acid rain was set at different acidity according to the acid rain component of Linan in recent years. The experiment consisted of three different treatments. Three gradients of simulated acid rain treatment[pH 2.5, 4.0, and CK (lake water)] were designed to determine the effects of simulated acid rain on soil bacterial community diversity in transition forest. Soil DNA was extracted from the soils for polymerase chain reaction amplification and high-throughput sequencing to study the effects of acid rain on the fungal communities of the mixed forest of Moso bamboo and broadleaf soil. We obtained 601 287 sequences across the three types of sampling sites. Sequences were affiliated to 13 different phyla throughout the dataset. The dominant fungal groups were Ascomycota, Basidiomycota, Mortierellomycota, and Mucoromycota. Simulated acid significantly increased the number of operational taxonomic units, Ace index, and Chao1 index of fungal communities (P<0.05). The results of principal coordinates analysis (PCoA) also revealed that acid rain significantly modified the structure. The changes in soil fungal community structure were mainly related to the abundance of genera Bifiguratu, Geminibasidium, Purpureocillium, and Oidiodendron, which could be utilized as indicator species to determine changes in soil fungal community structure. Redundancy and correlation analysis showed that changes in basic physicochemical factors in the soil, such as soil pH and total nitrogen, can significantly influence the composition of the fungal community (P<0.05).
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Soil
/
Acid Rain
Type of study:
Prognostic_studies
Country/Region as subject:
Asia
Language:
Zh
Journal:
Huan Jing Ke Xue
Year:
2020
Document type:
Article
Affiliation country:
China
Country of publication:
China