Your browser doesn't support javascript.
loading
Configuration effect in polyoxometalate-based dyes on the performance of DSSCs: an insight from a theoretical perspective.
Gao, Yu; Guan, Wei; Wang, Xue-Song; Jia, Ran; Yan, Li-Kai; Su, Zhong-Min.
Affiliation
  • Gao Y; Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. yanlk924@nenu.edu.cn.
  • Guan W; Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. yanlk924@nenu.edu.cn.
  • Wang XS; Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. yanlk924@nenu.edu.cn.
  • Jia R; Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023 Changchun, P. R. China. jiaran@jlu.edu.cn.
  • Yan LK; Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. yanlk924@nenu.edu.cn.
  • Su ZM; Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. yanlk924@nenu.edu.cn.
Phys Chem Chem Phys ; 22(28): 16032-16039, 2020 Jul 22.
Article in En | MEDLINE | ID: mdl-32633293
ABSTRACT
The electronic properties of dyes can be readily tuned by modifying the structure. Herein, the polyoxometalate (POM)-based dyes derived from dye XW11 with new patterns, donor-acceptor-π linker-acceptor (D-A-π-A) structure (dye 1), and D-π-A-π-A structure (dye 2) were designed by inserting a POM moiety besides the extensively exploited D-π-A structure (dye 3). Based on density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, the configuration effect on the designed dyes was investigated. The results indicate that dye 3 possesses the largest short-circuit photocurrent density JSC due to the red-shifted absorption spectra, superior intramolecular charge transfer (ICT) parameters and the largest electron injection efficiency. At the same time, dye 1 with a D-A-π-A structure not only benefits the conduction band energy shift, but also retards the charge recombination and dye aggregation effect, which is beneficial for open-circuit photovoltage VOC. Moreover, the dynamics analysis of interfacial electron transfer shows that the electrons in dye 1 are almost completely injected after 14 fs, while it takes a long time for dyes 2 and 3. The present work is expected to establish a structure-property relationship for future dye design.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Chem Chem Phys Journal subject: BIOFISICA / QUIMICA Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Chem Chem Phys Journal subject: BIOFISICA / QUIMICA Year: 2020 Document type: Article