Your browser doesn't support javascript.
loading
Reprogrammable fluorescence logic sensing for biomolecules via RNA-like coenzyme A-based coordination polymer.
Wang, Jiao; Zhang, Qingqing; Hu, Dandan; Zhan, Tianyu; Guo, Zhiyong; Wang, Sui; Hu, Yufang.
Affiliation
  • Wang J; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
  • Zhang Q; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China; St
  • Hu D; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
  • Zhan T; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
  • Guo Z; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
  • Wang S; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
  • Hu Y; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China; St
Biosens Bioelectron ; 165: 112405, 2020 Oct 01.
Article in En | MEDLINE | ID: mdl-32729525
In this study, coenzyme A (CoA)-based coordination polymers (CPs) have been generated in situ by exploiting the reaction of thiols with metal ion (Au(III) or Ag(I)), which are dependent on both thiol-metal and aurophilic metal∙metal interaction. It is interesting to note that CPs-related biosensing capabilities toward some biomolecules including ascorbic acid (AA), cysteine (Cys) and glutathione (GSH) are also investigated via SYBR Green II (SGII)-derived fluorescence switchable mechanisms. The synthesized CPs display especial RNA-like structure and are capable of initiating the fluorescence of SGII. Conversely, AA, Cys or GSH can give rise to the structural destruction of RNA-like CPs, thus inhibiting the fluorescence signal, and quantitative detection of these biomolecules are achieved favorably with a detection limit of 7.2, 0.55 and 0.48 nM, respectively. Meanwhile, the fascinating fluorescence on-off property and simple synthetic process are employed to build a series of basic logic gates (YES, NOT, OR, AND, INHIBIT and NOR) and multiple configurable logic gates (OR-AND and OR-OR-INHIBIT) along with different logic inputs. In view of these, developing CoA-based CPs as a new material to execute logic operations provides a valuable platform to establish the next generation of advanced molecular devices for clinic diagnostic and biomedical research.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polymers / Biosensing Techniques Language: En Journal: Biosens Bioelectron Journal subject: BIOTECNOLOGIA Year: 2020 Document type: Article Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polymers / Biosensing Techniques Language: En Journal: Biosens Bioelectron Journal subject: BIOTECNOLOGIA Year: 2020 Document type: Article Country of publication: United kingdom