Alkoxycarbonyl elimination of 3-O-substituted glucose and fructose by heat treatment under neutral pH.
Carbohydr Res
; 496: 108129, 2020 Oct.
Article
in En
| MEDLINE
| ID: mdl-32858482
3-O-Substituted reducing aldoses are commonly unstable under heat treatment at neutral and alkaline pH. In this study, to evaluate the decomposition products, nigerose (3-O-α-d-glucopyranosyl-d-glucose) and 3-O-methyl glucose were heated at 90 °C in 100 mM sodium phosphate buffer (pH 7.5). Decomposition via ß-elimination was observed that formed a mixture of 3-deoxy-arabino-hexonic acid and 3-deoxy-ribo-hexonic acid; upon further acid treatment, it was converted to their γ-lactones. Similarly, turanose (3-O-α-d-glucopyranosyl-d-fructose), a ketose isomer of nigerose, decomposed more rapidly than nigerose under the same conditions, forming the same products. These findings indicate that 3-O-substituted reducing glucose and fructose decompose via the same 1,2-enediol intermediate. The alkoxycarbonyl elimination of 3-O-substituted reducing glucose and fructose occurs readily if an O-glycosidic bond is located on the carbon adjacent to the 1,2-enediol intermediate. Following these experiments, we proposed a kinetic model for the3- decomposition of nigerose and turanose by heat treatment under neutral pH conditions. The proposed model showed a good fit with the experimental data collected in this study. The rate constant of the decomposition for nigerose was (1.2 ± 0.1) × 10-4 s-1, whereas that for turanose [(2.6 ± 0.2) × 10-4 s-1] was about 2.2 times higher.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Oxygen
/
Aldehydes
/
Fructose
/
Glucose
/
Hot Temperature
Type of study:
Prognostic_studies
Language:
En
Journal:
Carbohydr Res
Year:
2020
Document type:
Article
Country of publication:
Netherlands