Your browser doesn't support javascript.
loading
Multiscale simulation of plasma flows using active learning.
Diaw, A; Barros, K; Haack, J; Junghans, C; Keenan, B; Li, Y W; Livescu, D; Lubbers, N; McKerns, M; Pavel, R S; Rosenberger, D; Sagert, I; Germann, T C.
Affiliation
  • Diaw A; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Barros K; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Haack J; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Junghans C; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Keenan B; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Li YW; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Livescu D; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Lubbers N; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • McKerns M; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Pavel RS; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Rosenberger D; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Sagert I; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
  • Germann TC; Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
Phys Rev E ; 102(2-1): 023310, 2020 Aug.
Article in En | MEDLINE | ID: mdl-32942385
ABSTRACT
Plasma flows encountered in high-energy-density experiments display features that differ from those of equilibrium systems. Nonequilibrium approaches such as kinetic theory (KT) capture many, if not all, of these phenomena. However, KT requires closure information, which can be computed from microscale simulations and communicated to KT. We present a concurrent heterogeneous multiscale approach that couples molecular dynamics (MD) with KT in the limit of near-equilibrium flows. To reduce the cost of gathering information from MD, we use active learning to train neural networks on MD data obtained by randomly sampling a small subset of the parameter space. We apply this method to a plasma interfacial mixing problem relevant to warm dense matter, showing considerable computational gains when compared with the full kinetic-MD approach. We find that our approach enables the probing of Coulomb coupling physics across a broad range of temperatures and densities that are inaccessible with current theoretical models.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev E Year: 2020 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev E Year: 2020 Document type: Article Affiliation country: United States