Your browser doesn't support javascript.
loading
Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent.
Azar, Shahar; Udi, Shiran; Drori, Adi; Hadar, Rivka; Nemirovski, Alina; Vemuri, Kiran V; Miller, Maya; Sherill-Rofe, Dana; Arad, Yhara; Gur-Wahnon, Devorah; Li, Xiaoling; Makriyannis, Alexandros; Ben-Zvi, Danny; Tabach, Yuval; Ben-Dov, Iddo Z; Tam, Joseph.
Affiliation
  • Azar S; Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
  • Udi S; Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
  • Drori A; Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
  • Hadar R; Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
  • Nemirovski A; Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
  • Vemuri KV; Center for Drug Discovery, Northeastern University, Boston, MA, USA.
  • Miller M; Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel.
  • Sherill-Rofe D; Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel.
  • Arad Y; Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel.
  • Gur-Wahnon D; Laboratory of Medical Transcriptomics, Department of Nephrology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
  • Li X; Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
  • Makriyannis A; Center for Drug Discovery, Northeastern University, Boston, MA, USA.
  • Ben-Zvi D; Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel.
  • Tabach Y; Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel.
  • Ben-Dov IZ; Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
  • Tam J; Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel. Electronic address: yossi.tam@mail.huji.ac.il.
Mol Metab ; 42: 101087, 2020 12.
Article in En | MEDLINE | ID: mdl-32987186
OBJECTIVE: The endocannabinoid (eCB) system is increasingly recognized as being crucially important in obesity-related hepatic steatosis. By activating the hepatic cannabinoid-1 receptor (CB1R), eCBs modulate lipogenesis and fatty acid oxidation. However, the underlying molecular mechanisms are largely unknown. METHODS: We combined unbiased bioinformatics techniques, mouse genetic manipulations, multiple pharmacological, molecular, and cellular biology approaches, and genomic sequencing to systematically decipher the role of the hepatic CB1R in modulating fat utilization in the liver and explored the downstream molecular mechanisms. RESULTS: Using an unbiased normalized phylogenetic profiling analysis, we found that the CB1R evolutionarily coevolves with peroxisome proliferator-activated receptor-alpha (PPARα), a key regulator of hepatic lipid metabolism. In diet-induced obese (DIO) mice, peripheral CB1R blockade (using AM6545) induced the reversal of hepatic steatosis and improved liver injury in WT, but not in PPARα-/- mice. The antisteatotic effect mediated by AM6545 in WT DIO mice was accompanied by increased hepatic expression and activity of PPARα as well as elevated hepatic levels of the PPARα-activating eCB-like molecules oleoylethanolamide and palmitoylethanolamide. Moreover, AM6545 was unable to rescue hepatic steatosis in DIO mice lacking liver sirtuin 1 (SIRT1), an upstream regulator of PPARα. Both of these signaling molecules were modulated by the CB1R as measured in hepatocytes exposed to lipotoxic conditions or treated with CB1R agonists in the absence/presence of AM6545. Furthermore, using microRNA transcriptomic profiling, we found that the CB1R regulated the hepatic expression, acetylation, and transcriptional activity of p53, resulting in the enhanced expression of miR-22, which was found to specifically target SIRT1 and PPARα. CONCLUSIONS: We provide strong evidence for a functional role of the p53/miR-22/SIRT1/PPARα signaling pathway in potentially mediating the antisteatotic effect of peripherally restricted CB1R blockade.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Receptor, Cannabinoid, CB1 / Fatty Liver Limits: Animals / Humans / Male Language: En Journal: Mol Metab Year: 2020 Document type: Article Affiliation country: Israel Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Receptor, Cannabinoid, CB1 / Fatty Liver Limits: Animals / Humans / Male Language: En Journal: Mol Metab Year: 2020 Document type: Article Affiliation country: Israel Country of publication: Germany