Your browser doesn't support javascript.
loading
miRNAs Predicted to Regulate Host Anti-viral Gene Pathways in IPNV-Challenged Atlantic Salmon Fry Are Affected by Viral Load, and Associated With the Major IPN Resistance QTL Genotypes in Late Infection.
Woldemariam, Nardos Tesfaye; Agafonov, Oleg; Sindre, Hilde; Høyheim, Bjørn; Houston, Ross D; Robledo, Diego; Bron, James E; Andreassen, Rune.
Affiliation
  • Woldemariam NT; Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
  • Agafonov O; Department of Core Facilities, Bioinformatics Core Facility, Institute of Cancer Research, Radium Hospital, Oslo University Hospital, Oslo, Norway.
  • Sindre H; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway.
  • Høyheim B; Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
  • Houston RD; Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.
  • Robledo D; Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.
  • Bron JE; Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, United Kingdom.
  • Andreassen R; Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
Front Immunol ; 11: 2113, 2020.
Article in En | MEDLINE | ID: mdl-33013890
ABSTRACT
Infectious pancreatic necrosis virus (IPNV) infection has been a major problem in salmonid aquaculture. Marker-assisted selection of individuals with resistant genotype at the major IPN quantitative trait locus (IPN-QTL) has significantly reduced mortality in recent years. We have identified host miRNAs that respond to IPNV challenge in salmon fry that were either homozygous resistant (RR) or homozygous susceptible (SS) for the IPN-QTL. Small RNA-sequenced control samples were compared to samples collected at 1, 7, and 20 days post challenge (dpc). This revealed 72 differentially expressed miRNAs (DE miRNAs). Viral load (VL) was lower in RR vs. SS individuals at 7 and 20 dpc. However, analysis of miRNA expression changes revealed no differences between RR vs. SS individuals in controls, at 1 or 7 dpc, while 38 "high viral load responding" miRNAs (HVL-DE miRNAs) were identified at 20 dpc. Most of the HVL-DE miRNAs showed changes that were more pronounced in the high VL SS group than in the low VL RR group when compared to the controls. The absence of differences between QTL groups in controls, 1 and 7 dpc indicates that the QTL genotype does not affect miRNA expression in healthy fish or their first response to viral infections. The miRNA differences at 20 dpc were associated with the QTL genotype and could, possibly, contribute to differences in resistance/susceptibility at the later stage of infection. In silico target gene predictions revealed that 180 immune genes were putative targets, and enrichment analysis indicated that the miRNAs may regulate several major immune system pathways. Among the targets of HVL-DE miRNAs were IRF3, STAT4, NFKB2, MYD88, and IKKA. Interestingly, TNF-alpha paralogs were targeted by different DE miRNAs. Most DE miRNAs were from conserved miRNA families that respond to viral infections in teleost (e.g., miR-21, miR-146, miR-181, miR-192, miR-221, miR-462, miR-731, and miR-8159), while eight were species specific. The miRNAs showed dynamic temporal changes implying they would affect their target genes differently throughout disease progression. This shows that miRNAs are sensitive to VL and disease progression, and may act as fine-tuners of both immediate immune response activation and the later inflammatory processes.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Infectious pancreatic necrosis virus / Birnaviridae Infections / Salmo salar / MicroRNAs / Host-Pathogen Interactions / Fish Diseases Type of study: Prognostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: Front Immunol Year: 2020 Document type: Article Affiliation country: Norway

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Infectious pancreatic necrosis virus / Birnaviridae Infections / Salmo salar / MicroRNAs / Host-Pathogen Interactions / Fish Diseases Type of study: Prognostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: Front Immunol Year: 2020 Document type: Article Affiliation country: Norway
...