Your browser doesn't support javascript.
loading
Zinc provides neuroprotection by regulating NLRP3 inflammasome through autophagy and ubiquitination in a spinal contusion injury model.
Lin, Jia-Quan; Tian, He; Zhao, Xiao-Guang; Lin, Sen; Li, Dao-Yong; Liu, Yuan-Ye; Xu, Chang; Mei, Xi-Fan.
Affiliation
  • Lin JQ; Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
  • Tian H; Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
  • Zhao XG; Department of Emergency, The First Affifiliated Hospital of Jinzhou Medical University, Jinzhou, China.
  • Lin S; Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
  • Li DY; Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
  • Liu YY; Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
  • Xu C; Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
  • Mei XF; Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
CNS Neurosci Ther ; 27(4): 413-425, 2021 04.
Article in En | MEDLINE | ID: mdl-33034415
ABSTRACT

AIM:

Spinal cord injury (SCI) is a serious disabling injury worldwide, and the excessive inflammatory response it causes plays an important role in secondary injury. Regulating the inflammatory response can be a potential therapeutic strategy for improving the prognosis of SCI. Zinc has been demonstrated to have a neuroprotective effect in experimental spinal cord injury models. In this study, we aimed to explore the neuroprotective effect of zinc through the suppression of the NLRP3 inflammasome.

METHOD:

Allen's method was used to establish an SCI model in C57BL/6J mice. The Basso Mouse Scale (BMS), Nissl staining were employed to confirm the protective effect of zinc on neuronal survival and functional recovery in vivo. Western blotting (WB), immunofluorescence (IF), and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression levels of NLRP3 inflammasome and autophagy-related proteins. Transmission electron microscopy (TEM) was used to confirm the occurrence of zinc-induced autophagy. In vitro, lipopolysaccharide (LPS) and ATP polarized BV2 cells to a proinflammatory phenotype. 3-Methyladenine (3-MA) and bafilomycin A1 (BafA1) were chosen to explore the relationship between the NLRP3 inflammasome and autophagy. A coimmunoprecipitation assay was used to detect the ubiquitination of the NLRP3 protein.

RESULTS:

Our data showed that zinc significantly promoted motor function recovery after SCI. In vivo, zinc treatment inhibited the protein expression level of NLRP3 while increasing the level of autophagy. These effects were fully validated by the polarization of BV2 cells to a proinflammatory phenotype. The results showed that when 3-MA and BafA1 were applied, the promotion of autophagy by zinc was blocked and that the inhibitory effect of zinc on NLRP3 was reversed. Furthermore, co-IP confirmed that the promotion of autophagy by zinc also activated the protein expression of ubiquitin and suppressed high levels of NLRP3.

CONCLUSION:

Zinc provides neuroprotection by regulating NLRP3 inflammasome through autophagy and ubiquitination after SCI.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Spinal Cord Injuries / Autophagy / Zinc / Neuroprotective Agents / Ubiquitination / NLR Family, Pyrin Domain-Containing 3 Protein Limits: Animals Language: En Journal: CNS Neurosci Ther Journal subject: NEUROLOGIA / TERAPEUTICA Year: 2021 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Spinal Cord Injuries / Autophagy / Zinc / Neuroprotective Agents / Ubiquitination / NLR Family, Pyrin Domain-Containing 3 Protein Limits: Animals Language: En Journal: CNS Neurosci Ther Journal subject: NEUROLOGIA / TERAPEUTICA Year: 2021 Document type: Article Affiliation country: China