Your browser doesn't support javascript.
loading
Local negative permittivity and topological phase transition in polar skyrmions.
Das, S; Hong, Z; Stoica, V A; Gonçalves, M A P; Shao, Y T; Parsonnet, E; Marksz, E J; Saremi, S; McCarter, M R; Reynoso, A; Long, C J; Hagerstrom, A M; Meyers, D; Ravi, V; Prasad, B; Zhou, H; Zhang, Z; Wen, H; Gómez-Ortiz, F; García-Fernández, P; Bokor, J; Íñiguez, J; Freeland, J W; Orloff, N D; Junquera, J; Chen, L Q; Salahuddin, S; Muller, D A; Martin, L W; Ramesh, R.
Affiliation
  • Das S; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA. sujitdas@berkeley.edu.
  • Hong Z; Department of Physics, University of California, Berkeley, CA, USA. sujitdas@berkeley.edu.
  • Stoica VA; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
  • Gonçalves MAP; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Shao YT; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
  • Parsonnet E; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxemburg.
  • Marksz EJ; Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, Santander, Spain.
  • Saremi S; Physics and Materials Science Research Unit, University of Luxembourg, Belvaux, Luxembourg.
  • McCarter MR; School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
  • Reynoso A; Department of Physics, University of California, Berkeley, CA, USA.
  • Long CJ; National Institute of Standards and Technology, Boulder, CO, USA.
  • Hagerstrom AM; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Meyers D; Department of Physics, University of California, Berkeley, CA, USA.
  • Ravi V; Department of Physics, University of California, Berkeley, CA, USA.
  • Prasad B; National Institute of Standards and Technology, Boulder, CO, USA.
  • Zhou H; National Institute of Standards and Technology, Boulder, CO, USA.
  • Zhang Z; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Wen H; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Gómez-Ortiz F; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • García-Fernández P; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA.
  • Bokor J; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA.
  • Íñiguez J; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA.
  • Freeland JW; Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, Santander, Spain.
  • Orloff ND; Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, Santander, Spain.
  • Junquera J; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.
  • Chen LQ; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxemburg.
  • Salahuddin S; Physics and Materials Science Research Unit, University of Luxembourg, Belvaux, Luxembourg.
  • Muller DA; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA.
  • Martin LW; National Institute of Standards and Technology, Boulder, CO, USA.
  • Ramesh R; Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, Santander, Spain.
Nat Mater ; 20(2): 194-201, 2021 Feb.
Article in En | MEDLINE | ID: mdl-33046856
ABSTRACT
Topological solitons such as magnetic skyrmions have drawn attention as stable quasi-particle-like objects. The recent discovery of polar vortices and skyrmions in ferroelectric oxide superlattices has opened up new vistas to explore topology, emergent phenomena and approaches for manipulating such features with electric fields. Using macroscopic dielectric measurements, coupled with direct scanning convergent beam electron diffraction imaging on the atomic scale, theoretical phase-field simulations and second-principles calculations, we demonstrate that polar skyrmions in (PbTiO3)n/(SrTiO3)n superlattices are distinguished by a sheath of negative permittivity at the periphery of each skyrmion. This enhances the effective dielectric permittivity compared with the individual SrTiO3 and PbTiO3 layers. Moreover, the response of these topologically protected structures to electric field and temperature shows a reversible phase transition from the skyrmion state to a trivial uniform ferroelectric state, accompanied by large tunability of the dielectric permittivity. Pulsed switching measurements show a time-dependent evolution and recovery of the skyrmion state (and macroscopic dielectric response). The interrelationship between topological and dielectric properties presents an opportunity to simultaneously manipulate both by a single, and easily controlled, stimulus, the applied electric field.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Mater Journal subject: CIENCIA / QUIMICA Year: 2021 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Mater Journal subject: CIENCIA / QUIMICA Year: 2021 Document type: Article Affiliation country: United States