Lithium Hydroxide Hydrolysis Combined with MALDI TOF Mass Spectrometry for Rapid Sphingolipid Detection.
J Am Soc Mass Spectrom
; 32(1): 289-300, 2021 Jan 06.
Article
in En
| MEDLINE
| ID: mdl-33124427
Sphingolipids have diverse structural and bioactive functions that play important roles in many key biological processes. Factors such as low relative abundance, varied structures, and a dynamic concentration range provide a difficult analytical challenge for sphingolipid detection. To further improve mass-spectrometry-based sphingolipid analysis, lithium adduct consolidation was implemented to decrease spectral complexity and combine signal intensities, leading to increased specificity and sensitivity. We report the use of lithium hydroxide as a base in a routine hydrolysis procedure in order to effectively remove common ionization suppressants (such as glycolipids and glycerophospholipids) and introduce a source of lithium into the sample. In conjunction, an optimized MALDI matrix system, featuring 2',4',6'-trihydroxyacetophenone (THAP) is used to facilitate lithium adduct consolidation during the MALDI process. The result is a robust and high-throughput sphingolipid detection scheme, particularly of low-abundance ceramides. Application of our developed workflow includes the detection of differentially expressed liver sphingolipid profiles from a high-fat-induced obesity mouse model. We also demonstrate the method's effectiveness in detecting various sphingolipids in brain and plasma matrices. These results were corroborated with data from UHPLC HR MS/MS and MALDI FT-ICR, verifying the efficacy of the method application. Overall, we demonstrate a high-throughput workflow for sphingolipid analysis in various biological matrices by the use of MALDI TOF and lithium adduct consolidation.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Sphingolipids
/
Lithium Compounds
/
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
/
Liver
/
Obesity
Type of study:
Diagnostic_studies
/
Prognostic_studies
Limits:
Animals
Language:
En
Journal:
J Am Soc Mass Spectrom
Year:
2021
Document type:
Article
Affiliation country:
United States
Country of publication:
United States