Maxamycins: Durable Antibiotics Derived by Rational Redesign of Vancomycin.
Acc Chem Res
; 53(11): 2587-2599, 2020 11 17.
Article
in En
| MEDLINE
| ID: mdl-33138354
Since its discovery, vancomycin has been used in the clinic for >60 years. Because of their durability, vancomycin and related glycopeptides serve as the antibiotics of last resort for the treatment of protracted bacterial infections of resistant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Streptococcus pneumoniae. After 30 years of use, vancomycin resistance was first observed and is now widespread in enterococci and more recently in S. aureus. The widespread prevalence of vancomycin-resistant enterococci (VRE) and the emergence of vancomycin-resistant S. aureus (VRSA) represent a call to focus on the challenge of resistance, highlight the need for new therapeutics, and provide the inspiration for the design of more durable antibiotics less prone to bacterial resistance than even vancomycin.Herein we summarize progress on efforts to overcome vancomycin resistance, first addressing recovery of its original durable mechanism of action and then introducing additional independent mechanisms of action intended to increase the potency and durability beyond that of vancomycin itself. The knowledge of the origin of vancomycin resistance and an understanding of the molecular basis of the loss of binding affinity between vancomycin and the altered target ligand d-Ala-d-Lac provided the basis for the subtle and rational redesign of the vancomycin binding pocket to remove the destabilizing lone-pair repulsion or reintroduce a lost H-bond while not impeding binding to the unaltered ligand d-Ala-d-Ala. Preparation of the modified glycopeptide core structure was conducted by total synthesis, providing binding pocket-modified vancomycin aglycons with dual d-Ala-d-Ala/d-Lac binding properties that directly address the intrinsic mechanism of resistance to vancomycin. Fully glycosylated pocket-modified vancomycin analogues were generated through a subsequent two-step enzymatic glycosylation, providing a starting point for peripheral modifications used to introduce additional mechanisms of action. A well-established vancosamine N-(4-chlorobiphenyl)methyl (CBP) modification as well as newly discovered C-terminal trimethylammonium cation (C1) or guanidine modifications were introduced, providing two additional synergistic mechanisms of action independent of d-Ala-d-Ala/d-Lac binding. The CBP modification provides an additional stage for inhibition of cell wall synthesis that results from direct competitive inhibition of transglycosylase, whereas the C1/guanidine modification induces bacteria cell permeablization. The synergistic behavior of the three independent mechanisms of action combined in a single molecule provides ultrapotent antibiotics (MIC = 0.01-0.005 µg/mL against VanA VRE). Beyond the remarkable antimicrobial activity, the multiple mechanisms of action suppress the rate at which resistance may be selected, where any single mechanism of action is protected by the action of others. The results detailed herein show that rational targeting of durable vancomycin-derived antibiotics has generated compounds with a "resistance against resistance", provided new candidate antibiotics, and may serve as a generalizable strategy to combat antibacterial resistance.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Vancomycin
/
Drug Design
/
Anti-Bacterial Agents
Type of study:
Risk_factors_studies
Language:
En
Journal:
Acc Chem Res
Year:
2020
Document type:
Article
Affiliation country:
United States
Country of publication:
United States