Your browser doesn't support javascript.
loading
Layer and rhythm specificity for predictive routing.
Bastos, André M; Lundqvist, Mikael; Waite, Ayan S; Kopell, Nancy; Miller, Earl K.
Affiliation
  • Bastos AM; The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139; andre.bastos@vanderbilt.edu nk@bu.edu.
  • Lundqvist M; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Waite AS; The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Kopell N; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Miller EK; Division of Biological Psychology, Department of Psychology, Stockholm University, SE-10691, Stockholm, Sweden.
Proc Natl Acad Sci U S A ; 117(49): 31459-31469, 2020 12 08.
Article in En | MEDLINE | ID: mdl-33229572
ABSTRACT
In predictive coding, experience generates predictions that attenuate the feeding forward of predicted stimuli while passing forward unpredicted "errors." Different models have suggested distinct cortical layers, and rhythms implement predictive coding. We recorded spikes and local field potentials from laminar electrodes in five cortical areas (visual area 4 [V4], lateral intraparietal [LIP], posterior parietal area 7A, frontal eye field [FEF], and prefrontal cortex [PFC]) while monkeys performed a task that modulated visual stimulus predictability. During predictable blocks, there was enhanced alpha (8 to 14 Hz) or beta (15 to 30 Hz) power in all areas during stimulus processing and prestimulus beta (15 to 30 Hz) functional connectivity in deep layers of PFC to the other areas. Unpredictable stimuli were associated with increases in spiking and in gamma-band (40 to 90 Hz) power/connectivity that fed forward up the cortical hierarchy via superficial-layer cortex. Power and spiking modulation by predictability was stimulus specific. Alpha/beta power in LIP, FEF, and PFC inhibited spiking in deep layers of V4. Area 7A uniquely showed increases in high-beta (∼22 to 28 Hz) power/connectivity to unpredictable stimuli. These results motivate a conceptual model, predictive routing. It suggests that predictive coding may be implemented via lower-frequency alpha/beta rhythms that "prepare" pathways processing-predicted inputs by inhibiting feedforward gamma rhythms and associated spiking.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Gamma Rhythm / Models, Neurological Type of study: Prognostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: Proc Natl Acad Sci U S A Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Gamma Rhythm / Models, Neurological Type of study: Prognostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: Proc Natl Acad Sci U S A Year: 2020 Document type: Article