Your browser doesn't support javascript.
loading
Chemo-Mechanically Operating Palladium-Polymer Nanograting Film for a Self-Powered H2 Gas Sensor.
Seo, Min-Ho; Kang, Kyungnam; Yoo, Jae-Young; Park, Jaeho; Lee, Jae-Shin; Cho, Incheol; Kim, Beom-Jun; Jeong, Yongrok; Lee, Jung-Yong; Kim, Byeongsu; Rho, Junsuk; Yoon, Jun-Bo; Park, Inkyu.
Affiliation
  • Seo MH; School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, 49, Busandaehak-ro, Yangsan-si 43241, Gyeongsangnam-do, Republic of Korea.
  • Kang K; Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
  • Yoo JY; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
  • Park J; Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
  • Lee JS; Samsung Electronics Co., Ltd., Suwon 18448, Republic of Korea.
  • Cho I; Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
  • Kim BJ; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
  • Jeong Y; Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
  • Lee JY; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
  • Kim B; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
  • Rho J; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
  • Yoon JB; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
  • Park I; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
ACS Nano ; 14(12): 16813-16822, 2020 Dec 22.
Article in En | MEDLINE | ID: mdl-33263256
ABSTRACT
This study proposes a reliable and self-powered hydrogen (H2) gas sensor composed of a chemo-mechanically operating nanostructured film and photovoltaic cell. Specifically, the nanostructured film has a configuration in which an asymmetrically coated palladium (Pd) film is coated on a periodic polyurethane acrylate (PUA) nanograting. The asymmetric Pd nanostructures, optimized by a finite element method simulation, swell upon reacting with H2 and thereby bend the PUA nanograting, changing the amount of transmitted light and the current output of the photovoltaic cell. Since the degree of warping is determined by the concentration of H2 gas, a wide concentration range of H2 (0.1-4.0%) can be detected by measuring the self-generated electrical current of the photovoltaic cell without external power. The normalized output current changes are ∼1.5%, ∼2.8%, ∼3.5%, ∼5.0%, ∼21.5%, and 25.3% when the concentrations of H2 gas are 0.1%, 0.5%, 1.0%, 1.6%, 2%, and 4%, respectively. Moreover, because Pd is highly chemically reactive to H2 and also because there is no electrical current applied through Pd, the proposed sensor can avoid device failure due to the breakage of the Pd sensing material, resulting in high reliability, and can show high selectivity against various gases such as carbon monoxide, hydrogen sulfide, nitrogen dioxide, and water vapor. Finally, using only ambient visible light, the sensor was modularized to produce an alarm in the presence of H2 gas, verifying a potential always-on H2 gas monitoring application.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Nano Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Nano Year: 2020 Document type: Article