Your browser doesn't support javascript.
loading
Derivatives of nitrogen mustard anticancer agents with improved cytotoxicity.
Antoni, Frauke; Bernhardt, Günther.
Affiliation
  • Antoni F; Institute of Pharmacy, University of Regensburg, Regensburg, Germany.
  • Bernhardt G; Institute of Pharmacy, University of Regensburg, Regensburg, Germany.
Arch Pharm (Weinheim) ; 354(4): e2000366, 2021 Apr.
Article in En | MEDLINE | ID: mdl-33283341
In previous studies, we demonstrated that esters of bendamustine containing a basic moiety are far more cytotoxic anticancer agents than their parent compound and that the substitution of the labile ester moiety by a branched ester or an amide markedly increases stability in the blood plasma. In the current study, we showed that this substitution was bioisosteric. Aiming at increased cytotoxicity, we introduced the same modification to related nitrogen mustards: 6-isobendamustine, chlorambucil, and melphalan. The synthesis was accomplished using the coupling reagents N,N'-dicyclohexylcarbodiimide or 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate. Cytotoxicity against a panel of diverse cancer cells (carcinoma, sarcoma, and malignant melanoma) was assessed in a kinetic chemosensitivity assay. The target compounds showed cytotoxic or cytocidal effects at concentrations above 1 µM: a striking enhancement over bendamustine and 6-isobendamustine, both ineffective against the selected cancer cells at concentrations up to 50 µM, and a considerable improvement over chlorambucil, showing some potency only against the sarcoma cells. Melphalan was almost as effective as the target compounds-derivatization only provided a small improvement. The novel cytostatics are of interest as model compounds for analyzing a correlation between cytotoxicity and membrane transport and for the treatment of malignancies.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Antineoplastic Agents / Nitrogen Mustard Compounds Limits: Humans Language: En Journal: Arch Pharm (Weinheim) Year: 2021 Document type: Article Affiliation country: Germany Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Antineoplastic Agents / Nitrogen Mustard Compounds Limits: Humans Language: En Journal: Arch Pharm (Weinheim) Year: 2021 Document type: Article Affiliation country: Germany Country of publication: Germany