Your browser doesn't support javascript.
loading
Universal atom interferometer simulation of elastic scattering processes.
Fitzek, Florian; Siemß, Jan-Niclas; Seckmeyer, Stefan; Ahlers, Holger; Rasel, Ernst M; Hammerer, Klemens; Gaaloul, Naceur.
Affiliation
  • Fitzek F; Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
  • Siemß JN; Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany.
  • Seckmeyer S; Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
  • Ahlers H; Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany.
  • Rasel EM; Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
  • Hammerer K; Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
  • Gaaloul N; Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
Sci Rep ; 10(1): 22120, 2020 Dec 17.
Article in En | MEDLINE | ID: mdl-33335161
In this article, we introduce a universal simulation framework covering all regimes of matter-wave light-pulse elastic scattering. Applied to atom interferometry as a study case, this simulator solves the atom-light diffraction problem in the elastic case, i.e., when the internal state of the atoms remains unchanged. Taking this perspective, the light-pulse beam splitting is interpreted as a space and time-dependent external potential. In a shift from the usual approach based on a system of momentum-space ordinary differential equations, our position-space treatment is flexible and scales favourably for realistic cases where the light fields have an arbitrary complex spatial behaviour rather than being mere plane waves. Moreover, the solver architecture we developed is effortlessly extended to the problem class of trapped and interacting geometries, which has no simple formulation in the usual framework of momentum-space ordinary differential equations. We check the validity of our model by revisiting several case studies relevant to the precision atom interferometry community. We retrieve analytical solutions when they exist and extend the analysis to more complex parameter ranges in a cross-regime fashion. The flexibility of the approach, the insight it gives, its numerical scalability and accuracy make it an exquisite tool to design, understand and quantitatively analyse metrology-oriented matter-wave interferometry experiments.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2020 Document type: Article Affiliation country: Germany Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2020 Document type: Article Affiliation country: Germany Country of publication: United kingdom