Your browser doesn't support javascript.
loading
Distinct mechanisms control genome recognition by p53 at its target genes linked to different cell fates.
Farkas, Marina; Hashimoto, Hideharu; Bi, Yingtao; Davuluri, Ramana V; Resnick-Silverman, Lois; Manfredi, James J; Debler, Erik W; McMahon, Steven B.
Affiliation
  • Farkas M; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
  • Hashimoto H; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
  • Bi Y; Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
  • Davuluri RV; Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
  • Resnick-Silverman L; Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Manfredi JJ; Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Debler EW; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
  • McMahon SB; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA. steven.mcmahon@jefferson.edu.
Nat Commun ; 12(1): 484, 2021 01 20.
Article in En | MEDLINE | ID: mdl-33473123
ABSTRACT
The tumor suppressor p53 integrates stress response pathways by selectively engaging one of several potential transcriptomes, thereby triggering cell fate decisions (e.g., cell cycle arrest, apoptosis). Foundational to this process is the binding of tetrameric p53 to 20-bp response elements (REs) in the genome (RRRCWWGYYYN0-13RRRCWWGYYY). In general, REs at cell cycle arrest targets (e.g. p21) are of higher affinity than those at apoptosis targets (e.g., BAX). However, the RE sequence code underlying selectivity remains undeciphered. Here, we identify molecular mechanisms mediating p53 binding to high- and low-affinity REs by showing that key determinants of the code are embedded in the DNA shape. We further demonstrate that differences in minor/major groove widths, encoded by G/C or A/T bp content at positions 3, 8, 13, and 18 in the RE, determine distinct p53 DNA-binding modes by inducing different Arg248 and Lys120 conformations and interactions. The predictive capacity of this code was confirmed in vivo using genome editing at the BAX RE to interconvert the DNA-binding modes, transcription pattern, and cell fate outcome.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cell Differentiation / Tumor Suppressor Protein p53 Type of study: Prognostic_studies Limits: Humans Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2021 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cell Differentiation / Tumor Suppressor Protein p53 Type of study: Prognostic_studies Limits: Humans Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2021 Document type: Article Affiliation country: United States