Inhibition of Tumor-Host Cell Interactions Using Synthetic Heparin Mimetics.
ACS Appl Mater Interfaces
; 13(6): 7080-7093, 2021 Feb 17.
Article
in En
| MEDLINE
| ID: mdl-33533245
Low-molecular-weight heparin (LMWH) is the guideline-based drug for antithrombotic treatment of cancer patients, while its direct antitumor effects are a matter of ongoing debate. Although therapeutically established for decades, LMWH has several drawbacks mainly associated with its origin from animal sources. Aiming to overcome these limitations, a library of synthetic heparin mimetic polymers consisting of homo- and copolymers of sulfonated and carboxylated noncarbohydrate monomers has recently been synthesized via reversible addition-fragmentation chain transfer polymerization. These heparin mimetics were investigated for their capacities to interfere with simulated steps of tumor cell metastasis. Among them, homo- and copolymers from sodium 4-styrenesulfonate (poly(SSS)) with acrylic acid (poly(SSS-co-AA)) with an MW between 5 and 50 kDa efficiently attenuated cancer cell-induced coagulation and thus platelet activation and degranulation similar to or even better than LMWH. Furthermore, independent of anticoagulant activities, these polymers affected other metastasis-relevant targets with impressive affinities. Hence, they blocked heparanase enzymatic activity outmatching commercial heparins or a glycosidic drug candidate. Furthermore, these polymers bind P-selectin and the integrin VLA-4 similar to or even better than heparin, indicated by a biosensor approach and thus efficiently blocked melanoma cell binding to endothelium under blood flow conditions. This is the first report on the prospects of synthetic heparin mimetics as promising nontoxic compounds in oncology to potentially substitute heparin as an anticoagulant and to better understand its role as an antimetastatic drug.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Heparin, Low-Molecular-Weight
/
Melanoma
/
Anticoagulants
Type of study:
Guideline
Limits:
Humans
Language:
En
Journal:
ACS Appl Mater Interfaces
Journal subject:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Year:
2021
Document type:
Article
Affiliation country:
Germany
Country of publication:
United States