Your browser doesn't support javascript.
loading
Design, Synthesis, and In Silico Multitarget Pharmacological Simulations of Acid Bioisosteres with a Validated In Vivo Antihyperglycemic Effect.
Domínguez-Mendoza, Elix Alberto; Galván-Ciprés, Yelzyn; Martínez-Miranda, Josué; Miranda-González, Cristian; Colín-Lozano, Blanca; Hernández-Núñez, Emanuel; Hernández-Bolio, Gloria I; Palomino-Hernández, Oscar; Navarrete-Vazquez, Gabriel.
Affiliation
  • Domínguez-Mendoza EA; Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
  • Galván-Ciprés Y; Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
  • Martínez-Miranda J; Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
  • Miranda-González C; Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
  • Colín-Lozano B; Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
  • Hernández-Núñez E; Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados, IPN, Unidad Mérida, Yucatan 97310, Mexico.
  • Hernández-Bolio GI; Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados, IPN, Unidad Mérida, Yucatan 97310, Mexico.
  • Palomino-Hernández O; Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Juelich, 52425 Julich, Germany.
  • Navarrete-Vazquez G; Department of Chemistry, Rheinisch-Westfälische Technische Hochschule Aachen, 52425 Aachen, Germany.
Molecules ; 26(4)2021 Feb 04.
Article in En | MEDLINE | ID: mdl-33557136
ABSTRACT
Substituted phenylacetic (1-3), phenylpropanoic (4-6), and benzylidenethiazolidine-2,4-dione (7-9) derivatives were designed according to a multitarget unified pharmacophore pattern that has shown robust antidiabetic activity. This bioactivity is due to the simultaneous polypharmacological stimulation of receptors PPARα, PPARγ, and GPR40 and the enzyme inhibition of aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP-1B). The nine compounds share the same four pharmacophore elements an acid moiety, an aromatic ring, a bulky hydrophobic group, and a flexible linker between the latter two elements. Addition and substitution reactions were performed to obtain molecules at moderated yields. In silico pharmacological consensus analysis (PHACA) was conducted to determine their possible modes of action, protein affinities, toxicological activities, and drug-like properties. The results were combined with in vivo assays to evaluate the ability of these compounds to decrease glucose levels in diabetic mice at a 100 mg/kg single dose. Compounds 6 (a phenylpropanoic acid derivative) and 9 (a benzylidenethiazolidine-2,4-dione derivative) ameliorated the hyperglycemic peak in a statically significant manner in a mouse model of type 2 diabetes. Finally, molecular dynamics simulations were executed on the top performing compounds to shed light on their mechanism of action. The simulations showed the flexible nature of the binding pocket of AR, and showed that both compounds remained bound during the simulation time, although not sharing the same binding mode. In conclusion, we designed nine acid bioisosteres with robust in vivo antihyperglycemic activity that were predicted to have favorable pharmacokinetic and toxicological profiles. Together, these findings provide evidence that supports the molecular design we employed, where the unified pharmacophores possess a strong antidiabetic action due to their multitarget activation.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Computer Simulation / Drug Design / Molecular Dynamics Simulation / Hypoglycemic Agents Type of study: Prognostic_studies Language: En Journal: Molecules Journal subject: BIOLOGIA Year: 2021 Document type: Article Affiliation country: Mexico

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Computer Simulation / Drug Design / Molecular Dynamics Simulation / Hypoglycemic Agents Type of study: Prognostic_studies Language: En Journal: Molecules Journal subject: BIOLOGIA Year: 2021 Document type: Article Affiliation country: Mexico