Understanding the nature of NH3-coordinated active sites and the complete reaction schemes for NH3-SCR using Cu-SAPO-34 catalysts.
Phys Chem Chem Phys
; 23(8): 4700-4710, 2021 Mar 04.
Article
in En
| MEDLINE
| ID: mdl-33595551
Cu-SAPO-34 zeolite catalysts show excellent NH3-SCR performance at low temperature, which is due to the catalytic capacity of copper species. Isolated CuII ions and CuIIOH are active sites, but their nature and role are not fully understood. This paper reports the DFT calculations in combination with ab initio thermodynamics to investigate NH3 and H2O coordination to copper species under typical NH3-SCR reaction conditions. In the reduction part of the NH3-SCR reaction, NH2NO and NH4NO2 intermediates will form on CuII-2NH3/3NH3 and CuIIOH-2NH3 complexes, respectively. The Brønsted acid sites are crucial for the decomposition of these intermediates, rather than copper species. Furthermore, the decomposition of NH2NO is more energetically favorable than NH4NO2 which are formed on the Brønsted acid sites. In the re-oxidation part of the NH3-SCR reaction, O2 dissociation and NO2 formation occur on CuI-2NH3 complexes in the presence of NO, and the regeneration of CuIIOH-2NH3 requires the participation of H2O. The proposed complete mechanisms highlight the importance of ligand coordinated copper species for intermediate formation and O2 activation in NH3-SCR.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Phys Chem Chem Phys
Journal subject:
BIOFISICA
/
QUIMICA
Year:
2021
Document type:
Article
Country of publication:
United kingdom