Preparation and Characterization of Electrospun Fluoro-Containing Poly(imide-benzoxazole) Nano-Fibrous Membranes with Low Dielectric Constants and High Thermal Stability.
Nanomaterials (Basel)
; 11(2)2021 Feb 19.
Article
in En
| MEDLINE
| ID: mdl-33669852
The rapid development of advanced high-frequency mobile communication techniques has advanced urgent requirements for polymer materials with high-temperature resistance and good dielectric properties, including low dielectric constants (low-Dk) and low dielectric dissipation factors (low-Df). The relatively poor dielectric properties of common polymer candidates, such as standard polyimides (PIs) greatly limited their application in high-frequency areas. In the current work, benzoxazole units were successfully incorporated into the molecular structures of the fluoro-containing PIs to afford the poly(imide-benzoxazole) (PIBO) nano-fibrous membranes (NFMs) via electrospinning fabrication. First, the PI NFMs were prepared by the electrospinning procedure from organo-soluble PI resins derived from 2,2'-bis(3,4-dicarboxy-phenyl)hexafluoropropane dianhydride (6FDA) and aromatic diamines containing ortho-hydroxy-substituted benzamide units, including 2,2-bis[3-(4-aminobenzamide)-4-hydroxylphenyl]hexafluoropropane (p6FAHP) and 2,2-bis[3-(3-aminobenzamide)-4-hydroxyphenyl]hexafluoropropane (m6FAHP). Then, the PI NFMs were thermally dehydrated at 350 °C in nitrogen to afford the PIBO NFMs. The average fiber diameters (dav) for the PIBO NFMs were 1225 nm for PIBO-1 derived from PI-1 (6FDA-p6FAHP) precursor and 816 nm for PIBO-2 derived from PI-2 (6FDA-m6FAHP). The derived PIBO NFMs showed good thermal stability with the glass transition temperatures (Tgs) over 310 °C and the 5% weight loss temperatures (T5%) higher than 500 °C in nitrogen. The PIBO NFMs showed low dielectric features with the Dk value of 1.64 for PIBO-1 and 1.82 for PIBO-2 at the frequency of 1 MHz, respectively. The Df values were in the range of 0.010~0.018 for the PIBO NFMs.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Nanomaterials (Basel)
Year:
2021
Document type:
Article
Affiliation country:
China
Country of publication:
Switzerland