Your browser doesn't support javascript.
loading
Sustainable development of microalgal biotechnology in coastal zone for aquaculture and food.
Lu, Xiangning; Cui, Yulin; Chen, Yuting; Xiao, Yupeng; Song, Xiaojin; Gao, Fengzheng; Xiang, Yun; Hou, Congcong; Wang, Jun; Gan, Qinhua; Zheng, Xing; Lu, Yandu.
Affiliation
  • Lu X; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China.
  • Cui Y; Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong Province, China.
  • Chen Y; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China.
  • Xiao Y; Hainan GreenEnergy Microalgal Biotechnology Co., Ltd, Danzhou 571700, Hainan Province, China.
  • Song X; Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China.
  • Gao F; Bioprocess Engineering, Wageningen University and Research, 6708PB Wageningen, Netherlands.
  • Xiang Y; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China.
  • Hou C; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian Province, China.
  • Wang J; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China.
  • Gan Q; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China.
  • Zheng X; Hainan GreenEnergy Microalgal Biotechnology Co., Ltd, Danzhou 571700, Hainan Province, China.
  • Lu Y; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China. Electronic address: ydlu@hainanu.edu.cn.
Sci Total Environ ; 780: 146369, 2021 Aug 01.
Article in En | MEDLINE | ID: mdl-33773342
ABSTRACT
Region-specific Research and Development (R&D) of microalga-derived product systems are crucial if "biotech's green gold" is to be explored in a rational and economically viable way. Coastal zones, particularly the locations around the equator, are typically considered to be optimum cultivation sites due to stable annual temperature, light, and ready availability of seawater. However, a 'cradle-to-grave' assessment of the development of microalgal biotechnology in these areas, not only under the laboratory conditions, but also in the fields has not yet been demonstrated. In this study, to evaluate the viability of microalga-derived multi-product technology, we showed the development of microalgal biotechnology in coastal zones for aquaculture and food. By creating and screening a (sub)tropical microalgal collection, a Chlorella strain MEM25 with a robust growth in a wide range of salinities, temperatures, and light intensities was identified. Evaluation of the economic viability and performance of different scale cultivation system designs (500 L and 5000 L closed photobioreactors and 60,000 L open race ponds, ORPs) at coastal zones under geographically specific conditions showed the stable and robust characteristics of MEM25 across different production system designs and various spatial and temporal scales. It produces high amounts of proteins and polyunsaturated fatty acids (PUFAs) in various conditions. Feeding experiments reveal the nutritional merits of MEM25 as food additives where PUFAs and essential amino acids are enriched and the algal diet improves consumers' growth. Economic evaluation highlights an appreciable profitability of MEM25 production as human or animal food using ORP systems. Therefore, despite the pros and cons, sound opportunities exist for the development of market-ready multiple-product systems by employing region-specific R&D strategies for microalgal biotechnology.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Chlorella / Microalgae Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: Sci Total Environ Year: 2021 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Chlorella / Microalgae Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: Sci Total Environ Year: 2021 Document type: Article Affiliation country: China